TABLE OF CONTENTS

SAFETY CONSIDERATIONS 1
UNIT ARRANGEMENT AND ACCESS 2
SUPPLY FAN (BLOWER) SECTION 3
COOLING ... 5
PURON® (R-410A) REFRIGERANT 7
COOLING CHARGING CHARTS 9
CONVENIENCE OUTLETS 14
SMOKE DETECTORS 15
PROTECTIVE DEVICES 22
ELECTRIC HEATERS 23
CONDENSER COIL SERVICE 24
PREMIERLINK™ CONTROL 25
RTU-MP CONTROL SYSTEM 34
ECONOMIZER SYSTEMS 47
WIRING DIAGRAMS 56
PRE-START-UP 59
START-UP, GENERAL 59
START-UP, PREMIERLINK CONTROLS 60
START-UP, RTU-MP CONTROL 61
OPERATION SEQUENCE 64
FASTENER TORQUE VALUES 75
APPENDIX I. MODEL NUMBER SIGNIFICANCE . 76
APPENDIX II. PHYSICAL DATA 77
APPENDIX III. FAN PERFORMANCE 78
APPENDIX IV. ELECTRICAL DATA 83
APPENDIX V. WIRING DIAGRAM LIST 87
APPENDIX VI. MOTORMASTER SENSOR LOCATIONS 88
START-UP CHECKLIST 90

SAFETY CONSIDERATIONS

Installation and servicing of air-conditioning equipment can be hazardous due to system pressure and electrical components. Only trained and qualified service personnel should install, repair, or service air-conditioning equipment. Untrained personnel can perform the basic maintenance functions of replacing filters. Trained service personnel should perform all other operations.

When working on air-conditioning equipment, observe precautions in the literature, tags and labels attached to the unit, and other safety precautions that may apply. Follow all safety codes. Wear safety glasses and work gloves. Use quenching cloth for unbrazing operations. Have fire extinguishers available for all brazing operations.

Follow all safety codes. Wear safety glasses and work gloves. Use quenching cloth for brazing operations. Have fire extinguisher available. Read these instructions thoroughly and follow all warnings or cautions attached to the unit. Consult local building codes and National Electrical Code (NEC) for special requirements.

Recognize safety information. This is the safety-alert symbol △. When you see this symbol on the unit and in instructions or manuals, be alert to the potential for personal injury.

Understand the signal words DANGER, WARNING, and CAUTION. These words are used with the safety-alert symbol. DANGER identifies the most serious hazards which will result in severe personal injury or death. WARNING signifies a hazard which could result in personal injury or death. CAUTION is used to identify unsafe practices which may result in minor personal injury or product and property damage. NOTE is used to highlight suggestions which will result in enhanced installation, reliability, or operation.
WARNING

ELECTRICAL OPERATION HAZARD
Failure to follow this warning could result in personal injury or death.
Before performing service or maintenance operations on unit, turn off main power switch to unit. Electrical shock and rotating equipment could cause injury.

UNIT OPERATION AND SAFETY HAZARD
Failure to follow this warning could cause personal injury, death and/or equipment damage.
Puron® (R-410A) refrigerant systems operate at higher pressures than standard R-22 systems. Do not use R-22 service equipment or components on Puron refrigerant equipment.

CAUTION

CUT HAZARD
Failure to follow this caution may result in personal injury.
Sheet metal parts may have sharp edges or burrs. Use care and wear appropriate protective clothing, safety glasses and gloves when handling parts and servicing air conditioning units.

UNIT ARRANGEMENT AND ACCESS

General
Fig. 1 and Fig. 2 show general unit arrangement and access locations.

Routine Maintenance
These items should be part of a routine maintenance program, to be checked every month or two, until a specific schedule for each can be identified for this installation:

Quarterly Inspection (and 30 days after initial start)
- Return air filter replacement
- Outdoor hood inlet filters cleaned
- Belt tension checked
- Belt condition checked
- Pulley alignment checked
- Fan shaft bearing locking collar tightness checked
- Condenser coil cleanliness checked
- Condensate drain checked

Seasonal Maintenance
These items should be checked at the beginning of each season (or more often if local conditions and usage patterns dictate):

Air Conditioning
- Condenser fan motor mounting bolts tightness
- Compressor mounting bolts
- Condenser fan blade positioning
- Control box cleanliness and wiring condition
- Wire terminal tightness
• Refrigerant charge level
• Evaporator coil cleaning
• Evaporator blower motor amperage

Heating
• Power wire connections
• Fuses ready
• Manual-reset limit switch is closed

Economizer or Outside Air Damper
• Inlet filters condition
• Check damper travel (economizer)
• Check gear and dampers for debris and dirt

Air Filters and Screens
Each unit is equipped with return air filters. If the unit has an economizer, it will also have an outside air screen. If a manual outside air damper is added, an inlet air screen will also be present.

Each of these filters and screens will need to be periodically replaced or cleaned.

Return Air Filters
Return air filters are disposable fiberglass media type. Access to the filters is through the small lift-out panel located on the rear side of the unit, above the evaporator/return air access panel. (See Fig. 1.)

To remove the filters:
1. Grasp the bottom flange of the upper panel.
2. Lift up and swing the bottom out until the panel disengages and pulls out.
3. Reach inside and extract the filters from the filter rack.
4. Replace these filters as required with similar replacement filters of same size.

To re-install the access panel:
1. Slide the top of the panel up under the unit top panel.
2. Slide the bottom into the side channels.
3. Push the bottom flange down until it contacts the top of the lower panel (or economizer top).

IMPORTANT: DO NOT OPERATE THE UNIT WITHOUT THESE FILTERS!

Outside Air Hood
Outside air hood inlet screens are permanent aluminum-mesh type filters. Check these for cleanliness. Remove the screens when cleaning is required. Clean by washing with hot low-pressure water and soft detergent and replace all screens before restarting the unit. Observe the flow direction arrows on the side of each filter frame.

Economizer Inlet Air Screen
This air screen is retained by spring clips under the top edge of the hood. (See Fig. 3.)

Fig. 3 - Filter Installation

To remove the filter, open the spring clips. Re-install the filter by placing the frame in its track, then closing the spring clips.

Manual Outside Air Hood Screen
This inlet screen is secured by a retainer angle across the top edge of the hood. (See Fig. 4.)

Fig. 4 - Screens Installed on Outdoor-Air Hood

To remove the screen, loosen the screws in the top retainer and slip the retainer up until the filter can be removed. Re-install by placing the frame in its track, rotating the retainer back down and tighten all screws.

SUPPLY FAN (BLOWER) SECTION

WARNING

ELECTRICAL SHOCK HAZARD
Failure to follow this warning could cause personal injury or death.

Before performing service or maintenance operations on the fan system, shut off all unit power and tag-out the unit disconnect switch. Do not reach into the fan section with power still applied to unit.
Supply Fan (Belt-Drive)

The supply fan system consists of a forward-curved centrifugal blower wheel on a solid shaft with two concentric type bearings, one on each side of the blower housing. A fixed-pitch driven pulley is attached to the fan shaft and an adjustable-pitch driver pulley is on the motor. The pulleys are connected using a “V” type belt. (See Fig. 5.)

Fig. 5 - Belt Drive Motor Mounting

Belt

Check the belt condition and tension quarterly. Inspect the belt for signs of cracking, fraying or glazing along the inside surfaces. Check belt tension by using a spring-force tool (such as Browning’s Part Number “Belt Tension Checker” or equivalent tool); tension should be 6-lbs at a 5/8-in. deflection when measured at the centerline of the belt span. This point is at the center of the belt when measuring the distance between the motor shaft and the blower shaft.

NOTE: Without the spring-tension tool, place a straight edge across the belt surface at the pulleys, then deflect the belt at mid-span using one finger to a 1/2-in. deflection.

Adjust belt tension by loosening the motor mounting plate front bolts and rear bolt and sliding the plate toward the fan (to reduce tension) or away from fan (to increase tension). Ensure the blower shaft and the motor shaft are parallel to each other (pulleys aligned). Tighten all bolts when finished.

To replace the belt:

1. Use a belt with same section type or similar size. Do not substitute a “FHP” type belt. When installing the new belt, do not use a tool (screwdriver or pry-bar) to force the belt over the pulley flanges, this will stress the belt and cause a reduction in belt life.
2. Loosen the motor mounting plate front bolts and rear bolts.
3. Push the motor and its mounting plate towards the blower housing as close as possible to reduce the center distance between fan shaft and motor shaft.
4. Remove the belt by gently lifting the old belt over one of the pulleys.
5. Install the new belt by gently sliding the belt over both pulleys and then sliding the motor and plate away from the fan housing until proper tension is achieved.
6. Check the alignment of the pulleys, adjust if necessary.
7. Tighten all bolts.
8. Check the tension after a few hours of runtime and re-adjust as required.

Adjustable-Pitch Pulley on Motor

The motor pulley is an adjustable-pitch type that allows a servicer to implement changes in the fan wheel speed to match as-installed ductwork systems. The pulley consists of a fixed flange side that faces the motor (secured to the motor shaft) and a movable flange side that can be rotated around the fixed flange side that increases or reduces the pitch diameter of this driver pulley. (See Fig. 6.)

Fig. 6 - Supply-Fan Pulley Adjustment

As the pitch diameter is changed by adjusting the position of the movable flange, the centerline on this pulley shifts laterally (along the motor shaft). This creates a requirement for a realignment of the pulleys after any adjustment of the movable flange. Also reset the belt tension after each realignment.

Check the condition of the motor pulley for signs of wear. Glazing of the belt contact surfaces and erosion on these surfaces are signs of improper belt tension and/or belt slippage. Pulley replacement may be necessary.

To change fan speed:

1. Shut off unit power supply.
2. Loosen belt by loosening fan motor mounting nuts. (See Fig. 5.)
3. Loosen movable pulley flange setscrew. (See Fig. 6.)
4. Screw movable flange toward fixed flange to increase speed and away from fixed flange to decrease speed. Increasing fan speed increases load on motor. Do not exceed maximum speed specified.
5. Set movable flange at nearest keyway of pulley hub and tighten setscrew to torque specifications.

To align fan and motor pulleys:

1. Loosen fan pulley setscrews.
2. Slide fan pulley along fan shaft. Make angular alignment by loosening motor from mounting.
3. Tighten fan pulley setscrews and motor mounting bolts to torque specifications.
4. Recheck belt tension.
Bearings

This fan system uses bearings featuring concentric split locking collars. The collars are tightened through a cap screw bridging the split portion of the collar. The cap screw has a Torx T25 socket head. To tighten the locking collar, hold the locking collar tightly against the inner race of the bearing and torque the cap screw to 65-70 in-lb (7.4-7.9 Nm). (See Fig. 7.)

![Fig. 7 - Tightening Locking Collar](image)

Motor

When replacing the motor, also replace the external-tooth lock washer (star washer) under the motor mounting base; this is part of the motor grounding system. Ensure the teeth on the lock washer are in contact with the motor’s painted base. Tighten motor mounting bolts to 120 +/- 12 in-lbs.

Changing Fan Wheel Speed by Changing Pulleys

The horsepower rating of the belt is primarily dictated by the pitch diameter of the smaller pulley in the drive system (typically the motor pulley in these units). Do not install a replacement motor pulley with a smaller pitch diameter than provided on the original factory pulley. Change fan wheel speed by changing the fan pulley (larger pitch diameter to reduce wheel speed, smaller pitch diameter to increase wheel speed) or select a new system (both pulleys and matching belt(s)).

Before changing pulleys to increase fan wheel speed, check the fan performance at the target speed and airflow rate to determine new motor loading (bhp). Use the fan performance tables or use the Packaged Rooftop Builder software program. Confirm that the motor in this unit is capable of operating at the new operating condition. Fan shaft loading increases dramatically as wheel speed is increased.

To reduce vibration, replace the motor’s adjustable pitch pulley with a fixed pitch pulley (after the final airflow balance adjustment). This will reduce the amount of vibration generated by the motor/belt-drive system.

COOLING

WARNING

UNIT OPERATION AND SAFETY HAZARD

Failure to follow this warning could cause personal injury, death and/or equipment damage.

This system uses Puron® refrigerant which has higher pressures than R-22 and other refrigerants. No other refrigerant may be used in this system. Gauge set, hoses, and recovery system must be designed to handle Puron refrigerant. If unsure about equipment, consult the equipment manufacturer.

Condenser Coil

The condenser coil is new NOVATION Heat Exchanger Technology. This is an all-aluminum construction with louvered fins over single-depth crosstubes. The crosstubes have multiple small passages through which the refrigerant passes from header to header on each end. Tubes and fins are both aluminum construction with various optional coatings (see Model Number Format). Connection tube joints are copper. The coil may be one-row or two-row. Two-row coils are spaced apart to assist in cleaning.

![Fig. 8 - NOVATION Heat Exchanger Coils](image)

Evaporator Coil

The evaporator coil is traditional round-tube, plate-fin technology. Tube and fin construction is of various optional materials and coatings (see Model Number Format). Coils are multiple-row.

Coil Maintenance and Cleaning Recommendation

Routine cleaning of coil surfaces is essential to maintain proper operation of the unit. Elimination of contamination and removal of harmful residues will greatly increase the life of the coil and extend the life of the unit. The following maintenance and cleaning procedures are recommended as part of the routine maintenance activities to extend the life of the coil.
Remove Surface Loaded Fibers

Surface loaded fibers or dirt should be removed with a vacuum cleaner. If a vacuum cleaner is not available, a soft non-metallic bristle brush may be used. In either case, the tool should be applied in the direction of the fins. Coil surfaces can be easily damaged (fin edges can be easily bent over and damage to the coating of a protected coil) if the tool is applied across the fins.

NOTE: Use of a water stream, such as a garden hose, against a surface loaded coil will drive the fibers and dirt into the coil. This will make cleaning efforts more difficult. Surface loaded fibers must be completely removed prior to using low velocity clean water rinse.

Periodic Clean Water Rinse

A periodic clean water rinse is very beneficial for coils that are applied in coastal or industrial environments. However, it is very important that the water rinse is made with very low velocity water stream to avoid damaging the fin edges. Monthly cleaning as described below is recommended.

Routine Cleaning of NOVATION Condenser Coil Surfaces

To clean the NOVATION condenser coil, chemicals are NOT to be used; only water is approved as the cleaning solution. Only clean potable water is authorized for cleaning NOVATION condensers. Carefully remove any foreign objects or debris attached to the coil face or trapped within the mounting frame and brackets. Using a high pressure water sprayer, purge any soap or industrial cleaners from hose and/or dilution tank prior to wetting the coil.

Clean condenser face by spraying the coil core steadily and uniformly from top to bottom, directing the spray straight into or toward the coil face. Do not exceed 900 psig or a 45 degree angle; nozzle must be at least 12 in. (30 cm) from the coil face. Reduce pressure and use caution to prevent damage to air centers (fins). Do not fracture the braze between air centers and refrigerant tubes. Allow water to drain from the coil core and check for refrigerant leaks prior to start-up.

NOTE: Please see the NOVATION Condenser Service section for specific information on the coil.

Routine Cleaning of Evaporator Coil Surfaces

Monthly cleaning with Totaline® environmentally sound coil cleaner is essential to extend the life of coils. This cleaner is available from Carrier Replacement parts division as part number P902-0301 for one gallon container, and part number P902-0305 for a 5 gallon container. It is recommended that all round tube coil cleaner as described below. Coil cleaning should be part of the unit’s regularly scheduled maintenance procedures to ensure long life of the coil. Failure to clean the coils may result in reduced durability in the environment.

Avoid the use of
- coil brighteners
- acid cleaning prior to painting
- high pressure washers
- poor quality water for cleaning

Totaline environmentally sound coil cleaner is non-flammable, hypoallergenic, non-bacterial, and a USDA accepted biodegradable agent that will not harm coil or surrounding components such as electrical wiring, painted metal surfaces, or insulation. Use of non-recommended coil cleaners is strongly discouraged since coil and unit durability could be affected.

Totaline Environmentally Sound Coil Cleaner Application Equipment
- 2-1/2 gallon garden sprayer
- water rinse with low velocity spray nozzle

⚠️ CAUTION

PERSONAL INJURY HAZARD

Failure to follow this caution may result in corrosion and damage to the unit.

Harsh chemicals, household bleach or acid or basic cleaners should not be used to clean outdoor or indoor coils of any kind. These cleaners can be very difficult to rinse out of the coil and can accelerate corrosion at the fin/tube interface where dissimilar materials are in contact. If there is dirt below the surface of the coil, use the Totaline environmentally sound coil cleaner as described above.

⚠️ CAUTION

PERSONAL INJURY HAZARD

Failure to follow this caution may result in reduced unit performance.

High velocity water from a pressure washer, garden hose, or compressed air should never be used to clean a coil. The force of the water or air jet will bend the fin edges and increase airside pressure drop.
1. Proper eye protection such as safety glasses is recommended during mixing and application.

2. Remove all surface loaded fibers and dirt with a vacuum cleaner as described above.

3. Thoroughly wet finned surfaces with clean water and a low velocity garden hose, being careful not to bend fins.

4. Mix Totaline environmentally sound coil cleaner in a 2-1/2 gallon garden sprayer according to the instructions included with the cleaner. The optimum solution temperature is 100°F (38°C).

NOTE: Do NOT USE water in excess of 130°F (54°C), as the enzymatic activity will be destroyed.

5. Thoroughly apply Totaline environmentally sound coil cleaner solution to all coil surfaces including finned area, tube sheets and coil headers.

6. Hold garden sprayer nozzle close to finned areas and apply cleaner with a vertical, up-and-down motion. Avoid spraying in horizontal pattern to minimize potential for fin damage.

7. Ensure cleaner thoroughly penetrates deep into finned areas.

8. Interior and exterior finned areas must be thoroughly cleaned.

9. Finned surfaces should remain wet with cleaning solution for 10 minutes.

10. Ensure surfaces are not allowed to dry before rinsing. Reapply cleaner as needed to ensure 10-minute saturation is achieved.

11. Thoroughly rinse all surfaces with low velocity clean water using downward rinsing motion of water spray nozzle. Protect fins from damage from the spray nozzle.

Evaporator Coil Metering Devices

The metering devices are multiple fixed-bore devices (Acutrol™) swaged into the horizontal outlet tubes from the liquid header, located at the entrance to each evaporator coil circuit path. These are non-adjustable. Service requires replacing the entire liquid header assembly.

To check for possible blockage of one or more of these metering devices, disconnect the supply fan contactor (IFC) coil, then start the compressor and observe the frosting pattern on the face of the evaporator coil. A frost pattern should develop uniformly across the face of the coil starting at each horizontal header tube. Failure to develop frost at an outlet tube can indicate a plugged or a missing orifice.

Refrigerant System Pressure Access Ports

There are two access ports in each system - on the suction tube near the compressor and on the discharge tube near the compressor. These are brass fittings with black plastic caps. The hose connection fittings are standard 1/4 SAE Male Flare couplings.

The brass fittings are two-piece High Flow valves, with a receptacle base brazed to the tubing and an integral spring-closed check valve core screwed into the base. (See Fig. 9.) This check valve is permanently assembled into this core body and cannot be serviced separately. Replace the entire core body if necessary. Service tools are available from RCD that allow the replacement of the check valve core without having to recover the entire system refrigerant charge. Apply compressor refrigerant oil to the check valve core’s bottom O-ring. Install the fitting body with 96 +/- 10 in-lbs of torque; do not overtighten.

PURON® (R-410A) REFRIGERANT

This unit is designed for use with Puron (R-410A) refrigerant. Do not use any other refrigerant in this system.

Puron (R-410A) refrigerant is provided in pink (rose) colored cylinders. These cylinders are available with and without dip tubes; cylinders with dip tubes will have a label indicating this feature. For a cylinder with a dip tube, place the cylinder in the upright position (access valve at the top) when removing liquid refrigerant for charging. For a cylinder without a dip tube, invert the cylinder (access valve on the bottom) when removing liquid refrigerant.

Because Puron (R-410A) refrigerant is a blend, it is strongly recommended that refrigerant always be removed from the cylinder as a liquid. Admit liquid refrigerant into the system in the discharge line. If adding refrigerant into the suction line, use a commercial metering/expansion device at the gauge manifold. Remove liquid from the cylinder, pass it through the metering device at the gauge set and then pass it into the suction line as a vapor. Do not remove Puron (R-410A) refrigerant from the cylinder as a vapor.

Refrigerant Charge

Amount of refrigerant charge is listed on the unit’s nameplate. Refer to Carrier GTAC2-5 Charging, Recovery, Recycling and Reclamation training manual and the following procedures.

Unit panels must be in place when unit is operating during the charging procedure.

No Charge

Use standard evacuating techniques. After evacuating system, weigh in the specified amount of refrigerant.
Low-Charge Cooling

Using Cooling Charging Charts, (Fig. 10, 11, 12, and 13) vary refrigerant until the conditions of the appropriate chart are met. Note the charging charts are different from type normally used. Charts are based on charging the units to the correct superheat for the various operating conditions. Accurate pressure gauge and temperature sensing device are required. Connect the pressure gauge to the service port on the suction line. Mount the temperature sensing device on the suction line and insulate it so that outdoor ambient temperature does not affect the reading. Indoor-air cfm must be within the normal operating range of the unit.

TC D 08-14 Charging

To prepare the unit for charge adjustment: Disable/bypass all head pressure controls. Start/run both compressors. On sizes 08 and 12, ensure both condenser fans are running.

To Use Cooling Charging Charts

Select the appropriate unit charging chart. For size D08 use Fig. 10. For size D12 use Fig. 11. For size D14, use separate charts for each circuit as marked in Fig. 12 and Fig. 13.

For Circuit 1: Take the outdoor ambient temperature and read the Circuit 1 suction pressure gauge. Refer to unit charging chart to determine what the suction temperature should be. If suction temperature is high, add refrigerant. If suction temperature is low, carefully recover some of the charge. Recheck the suction pressure as charge is adjusted.

For Circuit 2: Repeat the procedure using “Circuit 2” chart.

EXAMPLE:

Model 50TC*D14

Circuit 1:

Outdoor Temperature 85°F (29°C)
Suction Pressure 125 psig (860 kPa)
Suction Temperature should be 58°F (14°C)

Circuit 2:

Outdoor Temperature 85°F (29°C)
Suction Pressure 120 psig (830 kPa)
Suction Temperature should be 60°F (16°C)

Compressors

Lubrication

Compressors are charged with the correct amount of oil at the factory.

UNIT DAMAGE HAZARD

Failure to follow this caution may result in damage to components.

The compressor is in a Puron® refrigerant system and uses a polyolester (POE) oil. This oil is extremely hygroscopic, meaning it absorbs water readily. POE oils can absorb 15 times as much water as other oils designed for HCFC and CFC refrigerants. Avoid exposure of the oil to the atmosphere.

Replacing Compressor

The compressor used with Puron refrigerant contains a POE oil. This oil has a high affinity for moisture. Do not remove the compressor’s tube plugs until ready to insert the unit suction and discharge tube ends.

Compressor mounting bolt torque is 65-75 in-lbs (7.3-8.5 Nm).
Fig. 10 - Cooling Charging Chart (D08)
Fig. 11 - Cooling Charging Chart (D12)
Fig. 12 - Cooling Charging Chart (D14, Circuit 1)

Fig. 13 - Cooling Charging Chart (D14, Circuit 2)
Compressor Rotation

On 3-phase units with scroll compressors, it is important to be certain compressor is rotating in the proper direction. To determine whether or not compressor is rotating in the proper direction:

1. Connect service gauges to suction and discharge pressure fittings.
2. Energize the compressor.
3. The suction pressure should drop and the discharge pressure should rise, as is normal on any start-up.

NOTE: If the suction pressure does not drop and the discharge pressure does not rise to normal levels:

1. Note that the evaporator fan is probably also rotating in the wrong direction.
2. Turn off power to the unit.
3. Reverse any two of the unit power leads.
4. Reapply power to the compressor.

The suction and discharge pressure levels should now move to their normal start-up levels.

NOTE: When the compressor is rotating in the wrong direction, the unit makes an elevated level of noise and does not provide cooling.

Filter Drier

Replace whenever refrigerant system is exposed to atmosphere. Only use factory specified liquid-line filter driers with working pressures no less than 650 psig. Do not install a suction-line filter drier in liquid line. A liquid-line filter drier designed for use with Puron® refrigerant is required on every unit.

Condenser-Fan Location

See Fig. 14.

1. Shut off unit power supply. Install lockout tag.
2. Remove condenser-fan assembly (grille, motor, and fan).
3. Loosen fan hub setscrews.
4. Adjust fan height as shown in Fig. 14.
5. Tighten setscrews to 84 in-lbs (9.5 Nm).
6. Replace condenser-fan assembly.

Troubleshooting Cooling System

Refer to Table 1 for additional troubleshooting topics.
<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>CAUSE</th>
<th>REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressor and Condenser Fan Will Not Start.</td>
<td>Power failure.</td>
<td>Call power company.</td>
</tr>
<tr>
<td></td>
<td>Fuse blown or circuit breaker tripped.</td>
<td>Replace fuse or reset circuit breaker.</td>
</tr>
<tr>
<td></td>
<td>Defective thermostat, contactor, transformer, or control relay.</td>
<td>Replace component.</td>
</tr>
<tr>
<td></td>
<td>Insufficient line voltage.</td>
<td>Determine cause and correct.</td>
</tr>
<tr>
<td></td>
<td>Incorrect or faulty wiring.</td>
<td>Check wiring diagram and rewire correctly.</td>
</tr>
<tr>
<td></td>
<td>Thermostat setting too high.</td>
<td>Lower thermostat setting below room temperature.</td>
</tr>
<tr>
<td>Compressor Will Not Start But Condenser Fan Runs.</td>
<td>Faulty wiring or loose connections in compressor circuit.</td>
<td>Check wiring and repair or replace.</td>
</tr>
<tr>
<td></td>
<td>Compressor motor burned out, seized, or internal overload open.</td>
<td>Determine cause. Replace compressor.</td>
</tr>
<tr>
<td></td>
<td>Defective run/start capacitor, overload, start relay.</td>
<td>Determine cause and replace.</td>
</tr>
<tr>
<td></td>
<td>One leg of three–phase power dead.</td>
<td>Replace fuse or reset circuit breaker. Determine cause.</td>
</tr>
<tr>
<td>Compressor Cycles (other than normally satisfying thermostat).</td>
<td>Refrigerant overcharge or undercharge.</td>
<td>Recover refrigerant, evacuate system, and recharge to nameplate.</td>
</tr>
<tr>
<td></td>
<td>Defective compressor.</td>
<td>Replace and determine cause.</td>
</tr>
<tr>
<td></td>
<td>Insufficient line voltage.</td>
<td>Determine cause and correct.</td>
</tr>
<tr>
<td></td>
<td>Blocked condenser.</td>
<td>Determine cause and correct.</td>
</tr>
<tr>
<td></td>
<td>Defective run/start capacitor, overload, or start relay.</td>
<td>Determine cause and correct.</td>
</tr>
<tr>
<td></td>
<td>Defective thermostat.</td>
<td>Replace thermostat.</td>
</tr>
<tr>
<td></td>
<td>Faulty condenser–fan motor or capacitor.</td>
<td>Replace.</td>
</tr>
<tr>
<td></td>
<td>Restriction in refrigerant system.</td>
<td>Locate restriction and remove.</td>
</tr>
<tr>
<td>Compressor Operates Continuously.</td>
<td>Dirty air filter.</td>
<td>Replace filter.</td>
</tr>
<tr>
<td></td>
<td>Unit undersized for load.</td>
<td>Decrease load or increase unit size.</td>
</tr>
<tr>
<td></td>
<td>Thermostat set too low.</td>
<td>Reset thermostat.</td>
</tr>
<tr>
<td></td>
<td>Low refrigerant charge.</td>
<td>Locate leak; repair and recharge.</td>
</tr>
<tr>
<td></td>
<td>Leaking valves in compressor.</td>
<td>Replace compressor.</td>
</tr>
<tr>
<td></td>
<td>Air in system.</td>
<td>Recover refrigerant, evacuate system, and recharge.</td>
</tr>
<tr>
<td></td>
<td>Condenser coil dirty or restricted.</td>
<td>Clean coil or remove restriction.</td>
</tr>
<tr>
<td>Excessive Head Pressure.</td>
<td>Dirty air filter.</td>
<td>Replace filter.</td>
</tr>
<tr>
<td></td>
<td>Dirty condenser coil.</td>
<td>Clean coil.</td>
</tr>
<tr>
<td></td>
<td>Refrigerant overcharged.</td>
<td>Recover excess refrigerant.</td>
</tr>
<tr>
<td></td>
<td>Air in system.</td>
<td>Recover refrigerant, evacuate system, and recharge.</td>
</tr>
<tr>
<td></td>
<td>Condenser air restricted or air short–cycling.</td>
<td>Determine cause and correct.</td>
</tr>
<tr>
<td>Head Pressure Too Low.</td>
<td>Low refrigerant charge.</td>
<td>Check for leaks; repair and recharge.</td>
</tr>
<tr>
<td></td>
<td>Compressor valves leaking.</td>
<td>Replace compressor.</td>
</tr>
<tr>
<td></td>
<td>Restriction in liquid tube.</td>
<td>Remove restriction.</td>
</tr>
<tr>
<td>Excessive Suction Pressure.</td>
<td>High head load.</td>
<td>Check for source and eliminate.</td>
</tr>
<tr>
<td></td>
<td>Compressor valves leaking.</td>
<td>Replace compressor.</td>
</tr>
<tr>
<td></td>
<td>Refrigerant overcharged.</td>
<td>Recover excess refrigerant.</td>
</tr>
<tr>
<td>Suction Pressure Too Low.</td>
<td>Dirty air filter.</td>
<td>Replace filter.</td>
</tr>
<tr>
<td></td>
<td>Low refrigerant charge.</td>
<td>Check for leaks; repair and recharge.</td>
</tr>
<tr>
<td></td>
<td>Metering device or low side restricted.</td>
<td>Remove source of restriction.</td>
</tr>
<tr>
<td></td>
<td>Insufficient evaporator airflow.</td>
<td>Increase air quantity. Check filter and replace if necessary.</td>
</tr>
<tr>
<td></td>
<td>Temperature too low in conditioned area.</td>
<td>Reset thermostat.</td>
</tr>
<tr>
<td></td>
<td>Outdoor ambient below 25° F.</td>
<td>Install low–ambient kit.</td>
</tr>
<tr>
<td>Compressor Makes Excessive Noise.</td>
<td>Compressor rotating in wrong direction.</td>
<td>Reverse the 3–phase power leads.</td>
</tr>
</tbody>
</table>
CONVENIENCE OUTLETS

⚠️ WARNING

ELECTRICAL OPERATION HAZARD
Failure to follow this warning could result in personal injury or death.
Units with convenience outlet circuits may use multiple disconnects. Check convenience outlet for power status before opening unit for service. Locate its disconnect switch, if appropriate, and open it. Tag-out this switch, if necessary.

Two types of convenience outlets are offered on 50TC models: Non-powered and unit-powered. Both types provide a 125-volt GFCI (ground-fault circuit-interrupter) duplex receptacle rated at 15-A behind a hinged waterproof access cover, located on the end panel of the unit. (See Fig. 15.)

Weatherproof Cover Installation
A weatherproof while-in-use cover for the factory-installed convenience outlets is now required by UL standards. This cover cannot be factory-mounted due to its depth. It must be installed at unit installation. For shipment, the convenience outlet is covered with a blank cover plate.

The weatherproof cover kit is shipped in the unit’s control box. The kit includes the hinged cover, a backing plate and gasket.

IMPORTANT: DISCONNECT ALL POWER TO UNIT AND CONVENIENCE OUTLET.
1. Remove the blank cover plate at the convenience outlet. Discard the blank cover.
2. Loosen the two screws at the GFCI duplex outlet, until approximately 1/2-in (13 mm) under screw heads are exposed.
3. Press the gasket over the screw heads.
4. Slip the backing plate over the screw heads at the keyhole slots and align with the gasket. Tighten the two screws until snug (do not over-tighten).
5. Mount the weatherproof cover to the backing plate as shown in Fig. 16.

Fig. 16 - Weatherproof Cover Installation

6. Remove two slot fillers in the bottom of the cover to permit service tool cords to exit the cover.
7. Check for full closing and latching.

Types of Convenience Outlets

Non-Powered Type
This type requires the field installation of a general-purpose 125-volt 15-A circuit powered from a source elsewhere in the building. Observe national and local codes when selecting wire size, fuse or breaker requirements and disconnect switch size and location. Route 125-v power supply conductors into the bottom of the utility box containing the duplex receptacle.

Unit-Powered Type
A unit-mounted transformer is factory-installed to stepdown the main power supply voltage to the unit to 115-v at the duplex receptacle. This option also includes a manual switch with fuse, located in a utility box and mounted on a bracket behind the convenience outlet; access is through the unit’s control box access panel. (See Fig. 15.)

The primary leads to the convenience outlet transformer are not factory-connected. Selection of primary power source is a customer-option. If local codes permit, the transformer primary leads can be connected at the line-side terminals on a unit-mounted non-fused disconnect or circuit-breaker switch; this will provide service power to the unit when the unit disconnect switch or circuit-breaker is open. Other connection methods will result in the convenience outlet circuit being de-energized when the unit disconnect or circuit-breaker is open. (See Fig. 17.)
SMOKE DETECTORS

Smoke detectors are available as factory-installed options on 50TC models. Smoke detectors may be specified for Supply Air only or for Return Air without or with economizer or in combination of Supply Air and Return Air. Return Air smoke detectors are arranged for vertical return configurations only. All components necessary for operation are factory-provided and mounted. The unit is factory-configured for immediate smoke detector shutdown operation; additional wiring or modifications to unit terminal board may be necessary to complete the unit and smoke detector configuration to meet project requirements.

System

The smoke detector system consists of a four-wire controller and one or two sensors. Its primary function is to shut down the rooftop unit in order to prevent smoke from circulating throughout the building. It is not to be used as a life saving device.

Controller

The controller includes a controller housing, a printed circuit board, and a clear plastic cover. (See Fig. 18.) The controller can be connected to one or two compatible duct smoke sensors. The clear plastic cover is secured to the housing with a single captive screw for easy access to the wiring terminals. The controller has three LEDs (for Power, Trouble and Alarm) and a manual test/reset button (on the cover face).

Duty Cycle

The unit-powered convenience outlet has a duty cycle limitation. The transformer is intended to provide power on an intermittent basis for service tools, lamps, etc; it is not intended to provide 15-amps loading for continuous duty loads (such as electric heaters for overnight use). Observe a 50% limit on circuit loading above 8-amps (i.e., limit loads exceeding 8-amps to 30 minutes of operation every hour).

Maintenance

Periodically test the GFCI receptacle by pressing the TEST button on the face of the receptacle. This should cause the internal circuit of the receptacle to trip and open the receptacle. Check for proper grounding wires and power line phasing if the GFCI receptacle does not trip as required. Press the RESET button to clear the tripped condition.

Fuse On Powered Type

The factory fuse is a Bussman “Fusetron” T-15, non-renewable screw-in (Edison base) type plug fuse.

Using Unit-Mounted Convenience Outlets

Units with unit-mounted convenience outlet circuits will often require that two disconnects be opened to de-energize all power to the unit. Treat all units as electrically energized until the convenience outlet power is also checked and de-energization is confirmed. Observe National Electrical Code Article 210, Branch Circuits, for use of convenience outlets.
Sensor

The sensor includes a plastic housing, a printed circuit board, a clear plastic cover, a sampling tube inlet and an exhaust tube. (See Fig. 19.) The sampling tube (when used) and exhaust tube are attached during installation. The sampling tube varies in length depending on the size of the rooftop unit. The clear plastic cover permits visual inspections without having to disassemble the sensor. The cover attaches to the sensor housing using four captive screws and forms an airtight chamber around the sensing electronics. Each sensor includes a harness with an RJ45 terminal for connecting to the controller. Each sensor has four LEDs (Power, Trouble, Alarm and Dirty) and a manual test/reset button (on the left-side of the housing).

The sensor uses a process called differential sensing to prevent gradual environmental changes from triggering false alarms. A rapid change in environmental conditions, such as smoke from a fire, causes the sensor to signal an alarm state, but dust and debris accumulated over time does not.

For installations using two sensors, the duct smoke detector does not differentiate which sensor signals an alarm or trouble condition.

Smoke Detector Locations

Supply Air

The Supply Air smoke detector sensor is located to the left of the unit’s indoor (supply) fan. (See Fig. 20.) Access is through the fan access panel. There is no sampling tube used at this location. The sampling tube inlet extends through the side plate of the fan housing (into a high pressure area). The controller is located on a bracket to the right of the return filter, accessed through the lift-off filter panel.

Return Air Without Economizer

The sampling tube is located across the return air opening on the unit basepan. (See Fig. 21.) The holes in the sampling tube face downward, into the return air stream. The sampling tube is connected via tubing to the return air sensor that is mounted on a bracket high on the partition between return filter and controller location. (This sensor is shipped in a flat-mounting location. Installation requires that this sensor be relocated to its operating location and the tubing to the sampling tube be connected. See installation steps).

Air is introduced to the duct smoke detector sensor’s sensing chamber through a sampling tube that extends into the HVAC duct and is directed back into the ventilation system through a (shorter) exhaust tube. The difference in air pressure between the two tubes pulls the sampled air through the sensing chamber. When a sufficient amount of smoke is detected in the sensing chamber, the sensor signals an alarm state and the controller automatically takes the appropriate action to shut down fans and blowers, change over air handling systems, notify the fire alarm control panel, etc.
Completing Installation of Return Air Smoke Sensor

1. Unscrew the two screws holding the Return Air Sensor detector plate. (See Fig. 23.) Save the screws.
2. Remove the Return Air Sensor and its detector plate.
3. Rotate the detector plate so the sensor is facing outwards and the sampling tube connection is on the bottom. (See Fig. 24.)
4. Screw the sensor and detector plate into its operating position using screws from Step 1. Make sure the sampling tube connection is on the bottom and the exhaust tube is on the top. (See Fig. 24.)
5. Connect the flexible tube on the sampling inlet to the sampling tube on the basepan.
6. For units with an economizer, the sampling tube is integrated into the economizer housing but the connection of the flexible tubing to the sampling tube is the same.

FIOP Smoke Detector Wiring and Response

All Units

FIOP smoke detector is configured to automatically shut down all unit operations when smoke condition is detected. See Fig. 25, Smoke Detector Wiring.

Highlight A

JMP 3 is factory-cut, transferring unit control to smoke detector.

Highlight B

Smoke detector NC contact set will open on smoke alarm condition, de-energizing the ORN conductor.

Highlight C

24-v power signal via ORN lead is removed at Smoke Detector input on LCTB; all unit operations cease immediately.

PremierLink™ Control

Unit operating functions (fan, cooling and heating) are terminated as described above. In addition:

Highlight D

On smoke alarm condition, the smoke detector NO Alarm contact will close, supplying 24-v power to GRA conductor.
Highlight E
GRA lead at Smoke Alarm input on LCTB provides 24-v signal to FIOP DDC control.

PremierLink™
This signal is conveyed to PremierLink FIOP’s TB1 at terminal TB1-6 (BLU lead). This signal initiates the FSD sequence by the PremierLink control. FSD status is reported to connected CCN network.

RTU-MP
The 24-v signal is conveyed to RTU-MP’s J1-10 input terminal. This signal initiates the FSD sequence by the RTU-MP control. FSD status is reported to connected BAS network.

Using Remote Logic
Five conductors are provided for field use (see Highlight F) for additional annunciation functions.

Additional Application Data — Refer to Catalog No. HKRNKA-1XA for discussions on additional control features of these smoke detectors including multiple unit coordination. (See Fig. 25.)

Sensor and Controller Tests

Sensor Alarm Test
The sensor alarm test checks a sensor’s ability to signal an alarm state. This test requires that you use a field provided SD-MAG test magnet.

OPERATIONAL TEST HAZARD
Failure to follow this caution may result in personnel and authority concern.
This test places the duct detector into the alarm state. Unless part of the test, disconnect all auxiliary equipment from the controller before performing the test. If the duct detector is connected to a fire alarm system, notify the proper authorities before performing the test.

Sensor Alarm Test Procedure
1. Hold the test magnet where indicated on the side of the sensor housing for seven seconds.
2. Verify that the sensor’s Alarm LED turns on.
3. Reset the sensor by holding the test magnet against the sensor housing for two seconds.
4. Verify that the sensor’s Alarm LED turns off.

Controller Alarm Test
The controller alarm test checks the controller’s ability to initiate and indicate an alarm state.
Controller Alarm Test Procedure

1. Press the controller’s test/reset switch for seven seconds.
2. Verify that the controller’s Alarm LED turns on.
3. Reset the sensor by pressing the test/reset switch for two seconds.
4. Verify that the controller’s Alarm LED turns off.

Dirty Controller Test

The dirty controller test checks the controller’s ability to initiate a dirty sensor test and indicate its results.

Dirty Controller Test Procedure

1. Press the controller’s test/reset switch for two seconds.
2. Verify that the controller’s Trouble LED flashes.

Dirty Sensor Test

The dirty sensor test provides an indication of the sensor’s ability to compensate for gradual environmental changes. A sensor that can no longer compensate for environmental changes is considered 100% dirty and requires cleaning or replacing. You must use a field provided SD-MAG test magnet to initiate a sensor dirty test. The sensor’s Dirty LED indicates the results of the dirty test as shown in Table 2.

Dirty Sensor Test Procedure

1. Hold the test magnet where indicated on the side of the sensor housing for two seconds.
2. Verify that the sensor’s Dirty LED flashes.

Changing the Dirty Sensor Test

By default, sensor dirty test results are indicated by:
• The sensor’s Dirty LED flashing.
• The controller’s Trouble LED flashing.
• The controller’s supervision relay contacts toggle.

The operation of a sensor’s dirty test can be changed so that the controller’s supervision relay is not used to indicate test results. When two detectors are connected to a controller, sensor dirty test operation on both sensors must be configured to operate in the same manner.

To Configure the Dirty Sensor Test Operation

1. Hold the test magnet where indicated on the side of the sensor housing until the sensor’s Alarm LED turns on and its Dirty LED flashes twice (approximately 60 seconds).
2. Reset the sensor by removing the test magnet then holding it against the sensor housing again until the sensor’s Alarm LED turns off (approximately 2 seconds).

Remote Station Test

The remote station alarm test checks a test/reset station’s ability to initiate and indicate an alarm state.

OPERATIONAL TEST HAZARD
Failure to follow this caution may result in personnel and authority concern.

Changing the dirty sensor test operation will put the detector into the alarm state and activate all automatic alarm responses. Before changing dirty sensor test operation, disconnect all auxiliary equipment from the controller and notify the proper authorities if connected to a fire alarm system.
SD-TRK4 Remote Alarm Test Procedure

1. Turn the key switch to the RESET/TEST position for seven seconds.
2. Verify that the test/reset station’s Alarm LED turns on.
3. Reset the sensor by turning the key switch to the RESET/TEST position for two seconds.
4. Verify that the test/reset station’s Alarm LED turns off.

Remote Test/Reset Station Dirty Sensor Test

The test/reset station dirty sensor test checks the test/reset station’s ability to initiate a sensor dirty test and indicate the results. It must be wired to the controller as shown in Fig. 26 and configured to operate the controller’s supervision relay. For more information, see “Changing the Dirty Sensor Test.”

Dirty Sensor Test Using an SD-TRK4

1. Turn the key switch to the RESET/TEST position for two seconds.
2. Verify that the test/reset station’s Trouble LED flashes.

Detector Cleaning

Cleaning the Smoke Detector

Clean the duct smoke sensor when the Dirty LED is flashing continuously or sooner if conditions warrant.

CAUTION

OPERATIONAL TEST HAZARD

Failure to follow this caution may result in personnel and authority concern.

If the smoke detector is connected to a fire alarm system, first notify the proper authorities that the detector is undergoing maintenance then disable the relevant circuit to avoid generating a false alarm.

1. Disconnect power from the duct detector then remove the sensor’s cover. (See Fig. 27.)
2. Using a vacuum cleaner, clean compressed air, or a soft bristle brush, remove loose dirt and debris from inside the sensor housing and cover. Use isopropyl alcohol and a lint-free cloth to remove dirt and other contaminants from the gasket on the sensor’s cover.
3. Squeeze the retainer clips on both sides of the optic housing then lift the housing away from the printed circuit board.
4. Gently remove dirt and debris from around the optic plate and inside the optic housing.
5. Replace the optic housing and sensor cover.
6. Connect power to the duct detector then perform a sensor alarm test.
Table 3 – Detector Indicators

<table>
<thead>
<tr>
<th>CONTROL OR INDICATOR</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic test/reset switch</td>
<td>Resets the sensor when it is in the alarm or trouble state. Activates or tests the sensor when it is in the normal state.</td>
</tr>
<tr>
<td>Alarm LED</td>
<td>Indicates the sensor is in the alarm state.</td>
</tr>
<tr>
<td>Trouble LED</td>
<td>Indicates the sensor is in the trouble state.</td>
</tr>
<tr>
<td>Dirty LED</td>
<td>Indicates the amount of environmental compensation used by the sensor (flashing continuously = 100%).</td>
</tr>
<tr>
<td>Power LED</td>
<td>Indicates the sensor is energized.</td>
</tr>
</tbody>
</table>

Indicators

Normal State

The smoke detector operates in the normal state in the absence of any trouble conditions and when its sensing chamber is free of smoke. In the normal state, the Power LED on both the sensor and the controller are on and all other LEDs are off.

Alarm State

The smoke detector enters the alarm state when the amount of smoke particulate in the sensor’s sensing chamber exceeds the alarm threshold value. (See Table 3.)

Upon entering the alarm state:

- The sensor’s Alarm LED and the controller’s Alarm LED turn on.
- The contacts on the controller’s two auxiliary relays switch positions.
- The contacts on the controller’s alarm initiation relay close.
- The controller’s remote alarm LED output is activated (turned on).
- The controller’s high impedance multiple fan shutdown control line is pulled to ground Trouble state.

The SuperDuct duct smoke detector enters the trouble state under the following conditions:

- A sensor’s cover is removed and 20 minutes pass before it is properly secured.
- A sensor’s environmental compensation limit is reached (100% dirty).
- A wiring fault between a sensor and the controller is detected.

An internal sensor fault is detected upon entering the trouble state:

- The contacts on the controller’s supervisory relay switch positions. (See Fig. 28.)
- If a sensor trouble, the sensor’s Trouble LED the controller’s Trouble LED turn on.
- If 100% dirty, the sensor’s Dirty LED turns on and the controller’s Trouble LED flashes continuously.
- If a wiring fault between a sensor and the controller, the controller’s Trouble LED turns on but not the sensor’s.

NOTE: All troubles are latched by the duct smoke detector. The trouble condition must be cleared and then the duct smoke detector must be reset in order to restore it to the normal state.

Resetting Alarm and Trouble Condition Trips

Manual reset is required to restore smoke detector systems to Normal operation. For installations using two sensors, the duct smoke detector does not differentiate which sensor signals an alarm or trouble condition. Check each sensor for Alarm or Trouble status (indicated by LED). Clear the condition that has generated the trip at this sensor. Then reset the sensor by pressing and holding the reset button (on the side) for 2 seconds. Verify that the sensor’s Alarm and Trouble LEDs are now off. At the controller, clear its Alarm or Trouble state by pressing and holding the manual reset button (on the front cover) for 2 seconds. Verify that the controller’s Alarm and Trouble LEDs are now off. Replace all panels.

Troubleshooting

Controller’s Trouble LED is On

1. Check the Trouble LED on each sensor connected to the controller. If a sensor’s Trouble LED is on, determine the cause and make the necessary repairs.
2. Check the wiring between the sensor and the controller. If wiring is loose or missing, repair or replace as required.

Controller’s Trouble LED is Flashing

1. One or both of the sensors is 100% dirty.
2. Determine which Dirty LED is flashing then clean that sensor assembly as described in the detector cleaning section.

Sensor’s Trouble LED is On

1. Check the sensor’s Dirty LED. If it is flashing, the sensor is dirty and must be cleaned.
2. Check the sensor’s cover. If it is loose or missing, secure the cover to the sensor housing.

3. Replace sensor assembly.

Sensor’s Power LED is Off

1. Check the controller’s Power LED. If it is off, determine why the controller does not have power and make the necessary repairs.

2. Check the wiring between the sensor and the controller. If wiring is loose or missing, repair or replace as required.

Controller’s Power LED is Off

1. Make sure the circuit supplying power to the controller is operational. If not, make sure JP2 and JP3 are set correctly on the controller before applying power.

2. Verify that power is applied to the controller’s supply input terminals. If power is not present, replace or repair wiring as required.

Remote Test/Reset Station’s Trouble LED Does Not Flash When Performing a Dirty Test, But the Controller’s Trouble LED Does

1. Verify that the remote test/station is wired as shown in Fig. 26. Repair or replace loose or missing wiring.

2. Configure the sensor dirty test to activate the controller’s supervision relay. See “Changing sensor dirty test operation.”

Sensor’s Trouble LED is On, But the Controller’s Trouble LED is OFF

Remove JP1 on the controller.

PROTECTIVE DEVICES

Compressor Protection

Overcurrent

Each compressor has internal linebreak motor protection. Reset is automatic after compressor motor has cooled.

Overtemperature

Each compressor has an internal protector to protect it against excessively high discharge gas temperatures. Reset is automatic.

High Pressure Switch

Each system is provided with a high pressure switch mounted on the discharge line. The switch is stem-mounted and brazed into the discharge tube. Trip setting is 630 psig +/- 10 psig (4344 +/- 69 kPa) when hot. Reset is automatic at 505 psig (3482 kPa).

Low Pressure Switch

Each system is protected against a loss of charge and low evaporator coil loading condition by a low pressure switch located on the suction line near the compressor. The switch is stem-mounted. Trip setting is 54 psig +/- 5 psig (372 +/- 34 kPa). Reset is automatic at 117 +/- 5 psig (807 +/- 34 kPa).

Supply (Indoor) Fan Motor Protection

Disconnect and lockout power when servicing fan motor.

The supply fan motor is equipped with an overcurrent protection device. The type of device depends on the motor size. (See Table 4.)

Table 4 – Supply Fan Motor Protection Devices

<table>
<thead>
<tr>
<th>Motor Size (bhp)</th>
<th>Overload Device</th>
<th>Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7</td>
<td>Internal linebreak</td>
<td>Automatic</td>
</tr>
<tr>
<td>2.4</td>
<td>Internal linebreak</td>
<td>Automatic</td>
</tr>
<tr>
<td>2.9</td>
<td>Thermik</td>
<td>Automatic</td>
</tr>
<tr>
<td>3.7</td>
<td>Thermik</td>
<td>Automatic</td>
</tr>
<tr>
<td>5.2</td>
<td>External (circuit breaker)</td>
<td>Manual</td>
</tr>
</tbody>
</table>

The Internal Linebreak type is an imbedded switch that senses both motor current and internal motor temperature. When this switch reaches its trip setpoint, the switch opens the power supply to the motor and the motor stops. Reset is automatic when the motor windings cool down.

The Thermik device is a snap-action overtemperature protection device that is imbedded in the motor windings. It is a pilot-circuit device that is wired into the unit’s 24-v control circuit. When this switch reaches its trip setpoint, it opens the 24-v control circuit and causes all unit operation to cease. This device resets automatically when the motor windings cool. Do not bypass this switch to correct trouble. Determine the cause and correct it.

The External motor overload device is a specially-calibrated circuit breaker that is UL recognized as a motor overload controller. It is an overcurrent device. When the motor current exceeds the circuit breaker setpoint, the device opens all motor power leads and the motor shuts down. Reset requires a manual reset at the overload switch. This device (designated IFCB) is located on the side of the supply fan housing, behind the fan access panel.

Troubleshooting Supply Fan Motor Overload Trips

The supply fan used in 50TC units is a forward-curved centrifugal wheel. At a constant wheel speed, this wheel has a characteristic that causes the fan shaft load to DECREASE when the static pressure in the unit-duct system increases and to INCREASE when the static pressure in the unit-duct system decreases (and fan airflow rate increases). Motor overload conditions typically develop when the unit is operated with an access panel removed, with unfinished duct work, in an economizer-open mode, or a leak develops in the duct system that allows a bypass back to unit return opening.

Condenser Fan Motor Protection

The condenser fan motors are internally protected against overtemperature.

Control Circuit, 24-V

The control circuit is protected against overcurrent conditions by a circuit breaker mounted on control transformer TRAN. Reset is manual.
ELECTRIC HEATERS

50TC units may be equipped with field-installed accessory electric heaters. The heaters are modular in design, with heater frames holding open coil resistance wires strung through ceramic insulators, line-break limit switches and a control contactor. One or two heater modules may be used in a unit.

Heater modules are installed in the compartment below the indoor (supply) fan outlet. Access is through the indoor access panel. Heater modules slide into the compartment on tracks along the bottom of the heater opening. (See Fig. 29-31.)

Fig. 29 - Typical Access Panel Location

Not all available heater modules may be used in every unit. Use only those heater modules that are UL listed for use in a specific size unit. Refer to the label on the unit cabinet for the list of approved heaters.

Unit heaters are marked with Heater Model Numbers. But heaters are ordered as and shipped in cartons marked with a corresponding heater Sales Package part number. See Table 5 for correlation between heater Model Number and Sales Package part number.

NOTE: The value in position 9 of the part number differs between the sales package part number (value is 1) and a bare heater model number (value is 0).

Fig. 30 - Typical Component Location

Single Point Boxes and Supplementary Fuses

When the unit MOCP device value exceeds 60-A, unit-mounted supplementary fuses are required for each heater circuit. These fuses are included in accessory Single Point Boxes, with power distribution and fuse blocks. The single point box will be installed directly under the unit control box, just to the left of the partition separating the indoor section (with electric heaters) from the outdoor section. The Single Point Box has a hinged access cover. (See Fig. 32.) The Single Point Box also includes a set of power taps to complete the wiring between the Single Point Box and the unit’s main control box terminals. Refer to accessory heater and Single Point Box installation instructions for details on tap connections.
Table 5 – Heater Model Number

<table>
<thead>
<tr>
<th>Bare Heater Model Number</th>
<th>C</th>
<th>R</th>
<th>H</th>
<th>E</th>
<th>A</th>
<th>T</th>
<th>E</th>
<th>R</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>A</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Sales Package</td>
<td></td>
</tr>
<tr>
<td>PNO</td>
<td>C</td>
<td>R</td>
<td>H</td>
<td>E</td>
<td>A</td>
<td>T</td>
<td>E</td>
<td>R</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Includes:</td>
<td></td>
</tr>
<tr>
<td>Bare Heater</td>
<td></td>
</tr>
<tr>
<td>Carton and packing</td>
<td></td>
</tr>
<tr>
<td>materials</td>
<td></td>
</tr>
<tr>
<td>Installation sheet</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 32 - Typical Single Point Installation

On 50TC units, all fuses are 60-A. Single point boxes containing fuses for 208/230-V applications use UL Class RK5 250-V fuses (Bussman FRNR 60 or Shawmut TR 60R). Single point boxes for 460-V and 575-V applications use UL Class T 600-V fuses (Bussman JJS 60 or Shawmut A6T 60). (Note that all heaters are qualified for use with a 60-A fuse, regardless of actual heater ampacity, so only 60-A fuses are necessary.) Unit heater applications not requiring supplemental fuses require a special Single Point Boxes without fuses. The accessory Single Point Boxes contain a terminal block and a set of power taps to complete the wiring between the Single Point Box and the unit's main control box terminals. Refer to accessory heater and Single Point Box installation instructions for details on tap connections.

Safety Devices

Electric heater applications use a combination of line-break/auto-reset limit switches and a pilot-circuit/manual reset limit switch to protect the unit against over-temperature situations.

Line-break/auto-reset limit switches are mounted on the base plate of each heater module. (See Fig. 33.) These are accessed through the indoor access panel. Remove the switch by removing two screws into the base plate and extracting the existing switch.

Pilot-circuit/manual reset limit switch is located in the side plate of the indoor (supply) fan housing. (See Fig. 30.)

Fig. 33 - Typical Location of Heater Limit Switches (3-phase heater shown)

Low-Voltage Control Connections

Pull the low-voltage control leads from the heater module(s) - VIO and BRN (two of each if two modules are installed; identify for Module #1) - to the 4-pole terminal board TB4 located on the heater bulkhead to the left of Heater #1. Connect the VIO lead from Heater #1 to terminal TB4-1. Connect the VIO lead from Heater #2 to terminal TB4-2. Connect both BRN leads to terminal TB4-3. (See Fig. 34.)

CONDENSER COIL SERVICE

Condenser Coil

The condenser coil is new NOVATION Heat Exchanger Technology. This is an all-aluminum construction with louvered fins over single-depth crosstubes. The crosstubes have multiple small passages through which the refrigerant passes from header to header on each end. Tubes and fins are both aluminum construction. Connection tube joints are copper. The coil may be one-row or two-row. Two-row coils are spaced apart to assist in cleaning.
Repairing NOVATION Condenser Tube Leaks

RCD offers service repair kit Part Number 50TJ660007 for repairing tube leaks in the NOVATION coil crosstubes. This kit includes approved braze materials (aluminum flux core braze rods), a heat shield, a stainless steel brush, replacement fin segments, adhesive for replacing fin segments, and instructions specific to the NOVATION aluminum coil. See EPIC for instruction sheet 99TA526379.

The repair procedure requires the use of MAPP gas and torch (must be supplied by servicer) instead of conventional oxyacetylene fuel and torch. While the flame temperature for MAPP is lower than that of oxyacetylene (and thus provides more flexibility when working on aluminum), the flame temperature is still higher than the melting temperature of aluminum, so user caution is required. Follow instructions carefully. Use the heat shield.

Replacing NOVATION Condenser Coil

The service replacement coil is preformed and is equipped with transition joints with copper stub tubes. When brazing the connection joints to the unit tubing, use a wet cloth around the aluminum tube at the transition joint. Avoid applying torch flame directly onto the aluminum tubing.

PREMIERLINK™ CONTROL

The PremierLink™ controller is compatible with Carrier Comfort Network® (CCN) devices. (See Fig. 35.) This control is designed to allow users the access and ability to change factory-defined settings, thus expanding the function of the standard unit control board. CCN service access tools include System Pilot (TM), Touch Pilot (TM) and Service Tool. (Standard tier display tools Navigator™ and Scrolling Marquee are not suitable for use with latest PremierLink controller (Version 2.x).)

The PremierLink control is factory-mounted in the 50TC unit’s main control box to the left of the LCTB. Factory wiring is completed through harnesses connected to the LVTB. Field connections are made at a 16-pole terminal block (TB1) located on the bottom shelf of the unit control box in front of the PremierLink controller. The factory-installed PremierLink control includes the supply-air temperature (SAT) sensor. The outdoor air temperature (OAT) sensor is included in the FIOp/accessory EconoMi$er 2 package.

Refer to Fig. 35 for PremierLink connection locations.

NOTE: Refer to Form Rooftop PremierLink Installation, Start-Up, and Configuration Instructions (Form 33CS-58SI) for complete PremierLink configuration, operating sequences and troubleshooting information. Have a copy of this manual available at unit start-up.

The PremierLink controller requires the use of a Carrier electronic thermostat or a CCN connection for time broadcast to initiate its internal timeclock. This is necessary for broadcast of time of day functions (occupied/unoccupied).

NOTE: PremierLink controller is shipped in Sensor mode. To be used with a thermostat, the PremierLink controller must be configured to Thermostat mode. Refer to PremierLink Configuration instructions for Operating Mode.
Supply Air Temperature (SAT) Sensor

On FIOP-equipped 50TC unit, the unit is supplied with a supply-air temperature (SAT) sensor (33ZCSENSAT). This sensor is a tubular probe type, approx 6-inches (12.7 mm) in length. It is a nominal 10-k ohm thermistor. See Table 6 for temperature-resistance characteristic.

The SAT is factory-wired. The SAT probe is wire-tied to the supply-air opening (on the horizontal opening end) in its shipping position. Remove the sensor for installation. Re-position the sensor in the flange of the supply-air opening or in the supply air duct (as required by local codes). Drill or punch a 1/2-in. hole in the flange or duct. Use two field-supplied, self-drilling screws to secure the sensor probe in a horizontal orientation. (See Fig. 36.)
Fig. 37 - Typical PremierLink™ System Control Wiring Diagram
Table 6 – Thermistor Resistance vs Temperature Values for Space Temperature Sensor, Supply Air Temperature Sensor, and Outdoor Air Temperature Sensor

<table>
<thead>
<tr>
<th>TEMP (C)</th>
<th>TEMP (F)</th>
<th>RESISTANCE (Ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40</td>
<td>-40</td>
<td>335,651</td>
</tr>
<tr>
<td>-35</td>
<td>-31</td>
<td>242,195</td>
</tr>
<tr>
<td>-30</td>
<td>-22</td>
<td>176,683</td>
</tr>
<tr>
<td>-25</td>
<td>-13</td>
<td>130,243</td>
</tr>
<tr>
<td>-20</td>
<td>-4</td>
<td>96,974</td>
</tr>
<tr>
<td>-15</td>
<td>5</td>
<td>72,895</td>
</tr>
<tr>
<td>-10</td>
<td>14</td>
<td>55,298</td>
</tr>
<tr>
<td>-5</td>
<td>23</td>
<td>42,315</td>
</tr>
<tr>
<td>0</td>
<td>32</td>
<td>32,651</td>
</tr>
<tr>
<td>5</td>
<td>41</td>
<td>25,395</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>19,903</td>
</tr>
<tr>
<td>15</td>
<td>59</td>
<td>15,714</td>
</tr>
<tr>
<td>20</td>
<td>68</td>
<td>12,494</td>
</tr>
<tr>
<td>25</td>
<td>77</td>
<td>10,000</td>
</tr>
<tr>
<td>30</td>
<td>86</td>
<td>8,056</td>
</tr>
<tr>
<td>35</td>
<td>95</td>
<td>6,530</td>
</tr>
<tr>
<td>40</td>
<td>104</td>
<td>5,325</td>
</tr>
<tr>
<td>45</td>
<td>113</td>
<td>4,367</td>
</tr>
<tr>
<td>50</td>
<td>122</td>
<td>3,601</td>
</tr>
<tr>
<td>55</td>
<td>131</td>
<td>2,985</td>
</tr>
<tr>
<td>60</td>
<td>140</td>
<td>2,487</td>
</tr>
<tr>
<td>65</td>
<td>149</td>
<td>2,082</td>
</tr>
<tr>
<td>70</td>
<td>158</td>
<td>1,752</td>
</tr>
</tbody>
</table>

NOTE: The sensor must be mounted in the discharge airstream downstream of the cooling coil and any heating devices. Be sure the probe tip does not come in contact with any of the unit’s heater surfaces.

Outdoor Air Temperature (OAT) Sensor

The OAT is factory-mounted in the EconoMi$er 2 (FIOP or accessory). It is a nominal 10k ohm thermistor attached to an eyelet mounting ring. See Table 6 for temperature-resistance characteristic.

EconoMi$er 2

The PremierLink™ control is used with EconoMi$er 2 (option or accessory) for outdoor air management. The damper position is controlled directly by the PremierLink control. EconoMi$er 2 has no internal logic device.

Outdoor air management functions can be enhanced with field-installation of these accessory control devices:

- Enthalpy control (outdoor air or differential sensors)
- Space CO2 sensor
- Outdoor air CO2 sensor

Refer to Table 7 for accessory part numbers.

Field Connections

Field connections for accessory sensor and input devices are made at the 16-pole terminal block (TB1) located on the control box bottom shelf in front of the PremierLink control. Some input devices also require a 24-vac signal source; connect at LCTB terminal R at “THERMOSTAT” connection strip for this signal source. See connections figures on following pages for field connection locations (and for continued connections at the PremierLink™ board inputs).

Table 8 provides a summary of field connections for units equipped with Space Sensor. Table 9 provides a summary of field connections for units equipped with Space Thermostat.

Space Sensors

The PremierLink controller is factory-shipped configured for Space Sensor Mode. A Carrier T-55 or T-56 space sensor must be used. T-55 space temperature sensor provides a signal of space temperature to the PremierLink control. T-56 provides same space temperature signal plus it allows for adjustment of space temperature setpoints from the face of the sensor by the occupants. See Table 6 for temperature versus resistance characteristic on the space sensors.

Connect T-55

See Fig. 38 for typical T-55 internal connections. Connect the T-55 SEN terminals to TB1 terminals 1 and 3. (See Fig. 39.)

Fig. 38 - T-55 Space Temperature Sensor Wiring

Fig. 39 - PremierLink T-55 Sensor
Table 7 – PremierLink™ Sensor Usage

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>OUTDOOR AIR TEMPERATURE SENSOR</th>
<th>RETURN AIR TEMPERATURE SENSOR</th>
<th>OUTDOOR AIR ENTHALPY SENSOR</th>
<th>RETURN AIR ENTHALPY SENSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Dry Bulb Temperature with PremierLink (PremierLink requires 4 – 20 mA Actuator)</td>
<td>Included – CRTEMPSN001A00</td>
<td>Required – 33ZCT55SPT or equivalent</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Single Enthalpy with PremierLink (PremierLink requires 4 – 20mA Actuator)</td>
<td>Included – Not Used</td>
<td>–</td>
<td>Requires – HH57AC077 or equivalent</td>
<td>–</td>
</tr>
<tr>
<td>Differential Enthalpy with PremierLink (PremierLink requires 4 – 20mA Actuator)</td>
<td>Included – Not Used</td>
<td>–</td>
<td>Requires – HH57AC077 or equivalent</td>
<td>Requires – HH57AC078 or equivalent</td>
</tr>
</tbody>
</table>

NOTES:
CO₂ Sensors (Optional):
33ZCSENCO₂ – Room sensor (adjustable). Aspirator box is required for duct mounting of the sensor.
33ZCASPCO₂ – Aspirator box used for duct-mounted CO₂ room sensor.
33ZCT55CO₂ – Space temperature and CO₂ room sensor with override.
33ZCT56CO₂ – Space temperature and CO₂ room sensor with override and setpoint.

Table 8 – Space Sensor Mode

<table>
<thead>
<tr>
<th>TB1 TERMINAL</th>
<th>FIELD CONNECTION</th>
<th>INPUT SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T55 – SEN/T56 – SEN</td>
<td>Analog (10k thermistor)</td>
</tr>
<tr>
<td>2</td>
<td>RMTOCC</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>3</td>
<td>T55 – SEN/T56 – SEN</td>
<td>Analog (10k thermistor)</td>
</tr>
<tr>
<td>4</td>
<td>CMPSAFE</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>5</td>
<td>T56 – SET</td>
<td>Analog (10k thermistor)</td>
</tr>
<tr>
<td>6</td>
<td>FSD</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>7</td>
<td>LOOP – PWR</td>
<td>Analog, 24VDC</td>
</tr>
<tr>
<td>8</td>
<td>SPS</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>9</td>
<td>IAQ – SEN</td>
<td>Analog, 4 – 20mA</td>
</tr>
<tr>
<td>10</td>
<td>FILTER</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>11</td>
<td>IAQ – COM/OAQ – COM/RH – COM</td>
<td>Analog, 4 – 20mA</td>
</tr>
<tr>
<td>12</td>
<td>CCN + (RED)</td>
<td>Digital, 5VDC</td>
</tr>
<tr>
<td>13</td>
<td>OAQ – SEN/RH – SEN</td>
<td>Analog, 4 – 20mA</td>
</tr>
<tr>
<td>14</td>
<td>CCN Gnd (WHT)</td>
<td>Digital, 5VDC</td>
</tr>
<tr>
<td>15</td>
<td>AUX OUT (Power Exhaust)</td>
<td>(Output) Digital, 24VAC</td>
</tr>
<tr>
<td>16</td>
<td>CCN – (BLK)</td>
<td>Digital, 5VDC</td>
</tr>
</tbody>
</table>

LEGEND:
T55 – Space Temperature Sensor
T56 – Space Temperature Sensor
CCN – Carrier Comfort Network (communication bus)
CMPSAFE – Compressor Safety
FILTER – Dirty Filter Switch
FSD – Fire Shutdown
IAQ – Indoor Air Quality (CO₂)
OAQ – Outdoor Air Quality (CO₂)
RH – Relative Humidity
SFS – Supply Fan Status
Table 9 – Thermostat Mode

<table>
<thead>
<tr>
<th>TB1 TERMINAL</th>
<th>FIELD CONNECTION</th>
<th>INPUT SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RAT SEN</td>
<td>Analog (10k thermistor)</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>3</td>
<td>RAT SEN</td>
<td>Analog (10k thermistor)</td>
</tr>
<tr>
<td>4</td>
<td>Y1</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Y2</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>7</td>
<td>LOOP – PWR</td>
<td>Analog, 24VAC</td>
</tr>
<tr>
<td>8</td>
<td>W1</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>9</td>
<td>IAQ – SEN</td>
<td>Analog, 4 – 20mA</td>
</tr>
<tr>
<td>10</td>
<td>W2</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>11</td>
<td>IAQ – COM/OAQ – COM/RH – COM</td>
<td>Analog, 4 – 20mA</td>
</tr>
<tr>
<td>12</td>
<td>CCN + (RED)</td>
<td>Digital, 5VDC</td>
</tr>
<tr>
<td>13</td>
<td>O AQ – SEN/RH – SEN</td>
<td>Analog, 4 – 20mA</td>
</tr>
<tr>
<td>14</td>
<td>CCN Gnd (WHT)</td>
<td>Digital, 5VDC</td>
</tr>
<tr>
<td>15</td>
<td>AUX OUT (Power Exhaust)</td>
<td>(Output) Discrete 24VAC</td>
</tr>
<tr>
<td>16</td>
<td>CCN – (BLK)</td>
<td>Digital, 5VDC</td>
</tr>
</tbody>
</table>

LEGEND:
- CCN – Carrier Comfort Network (communication bus)
- G – Thermostat Fan
- IAQ – Indoor Air Quality (CO2)
- O AQ – Outdoor Air Quality (CO2)
- RAT – Return Air Temperature
- RH – Relative Humidity
- W1 – Thermostat Heat Stage 1
- W2 – Thermostat Heat Stage 2
- Y1 – Thermostat Cool Stage 1
- Y2 – Thermostat Cool Stage 2

Connect T-56

See Fig. 40 for T-56 internal connections. Install a jumper between SEN and SET terminals as illustrated. Connect T-56 terminals to TB1 terminals 1, 3 and 5. (See Fig. 41.)

![Fig. 40 - T-56 Internal Connections](C08202)

Connect Thermostat

A 7-wire thermostat connection requires a 24-v power source and a common connection. Use the R and C terminals on the LCTB’s THERMOSTAT connection strip for these. Connect the thermostat’s Y1, Y2, W1, W2 and G terminals to PremierLink TB1 as shown in Fig. 42.

![Fig. 42 - Space Thermostat Connections](C08119)

If the 50TC unit is equipped with factory-installed smoke detector(s), disconnect the factory BLU lead at TB1-6 (Y2) before connecting the thermostat. Identify the BLU lead originating at LCTB DDC-1; disconnect at TB1-6 and tape off. Confirm that the second BLU lead at TB1-6 remains connected to PremierLink J4-8.

Fig. 41 - PremierLink™ T56 Sensor
If the 50TC unit has an economizer system and free-cooling operation is required, a sensor representing Return Air Temperature must also be connected (field-supplied and installed). This sensor may be a T-55 Space Sensor installed in the space or in the return duct, or it may be sensor PNO 33ZCSENSAT, installed in the return duct. (See Fig. 38.) Connect this sensor to TB1-1 and TB1-3 per Fig. 39. Temperature-resistance characteristic is found in Table 6.

Configure the Unit for Thermostat Mode

Connect to the CCN bus using a CCN service tool and navigate to PremierLink Configuration screen for Operating Mode. Default setting is Sensor Mode (value 1). Change the value to 0 to reconfigure the controller for Thermostat Mode.

When the PremierLink™ is configured for Thermostat Mode, these functions are not available: Fire Shutdown (FSD), Remote Occupied (RMTOCC), Compressor Safety (CMPSAFE), Supply Fan Status (SFS), and Filter Pressure Switch (FILTER).

Economizer Controls

Outdoor Air Enthalpy Control (PNO HH57AC077)

The enthalpy control (HH57AC077) is available as a field-installed accessory to be used with the EconoMi$er2 damper system. The outdoor air enthalpy sensor is part of the enthalpy control. (The separate field-installed accessory return air enthalpy sensor (HH57AC078) is required for differential enthalpy control. See below.)

Locate the enthalpy control in the economizer hood. Locate two GRA leads in the factory harness and connect these leads to enthalpy control sensors 2 and 3. (See Fig. 43.) Connect the enthalpy control power input terminals to economizer actuator power leads RED (connect to TR) and BLK (connect to TR).

Fig. 43 - Enthalpy Switch (HH57AC077) Connections

The outdoor enthalpy changeover setpoint is set at the enthalpy controller.

The enthalpy control receives the outdoor air enthalpy from the outdoor air enthalpy sensor and provides a dry contact switch input to the PremierLink controller. A closed contact indicates that outside air is preferred to the return air. An open contact indicates that the economizer should remain at minimum position.

Differential Enthalpy Control

Differential Enthalpy Control — Differential enthalpy control is provided by sensing and comparing the outside air and return air enthalpy conditions. Install the outdoor air enthalpy control as described above. Add and install a return air enthalpy sensor.

Return Air Enthalpy Sensor

Mount the return-air enthalpy sensor (HH57AC078) in the return-air duct. The return air sensor is wired to the enthalpy controller (HH57AC077). (See Fig. 44.)

Fig. 44 - Outside and Return Air Enthalpy Sensor Wiring

To wire the return air enthalpy sensor, perform the following:

1. Use a 2-conductor, 18 or 20 AWG, twisted pair cable to connect the return air enthalpy sensor to the enthalpy controller.
2. At the enthalpy control remove the factory-installed resistor from the (SR) and (+) terminals.
3. Connect the field-supplied RED wire to (+) spade connector on the return air enthalpy sensor and the (SR+) terminal on the enthalpy controller. Connect the BLK wire to (S) spade connector on the return air enthalpy sensor and the (SR) terminal on the enthalpy controller.

NOTE: The enthalpy control must be set to the “D” setting for differential enthalpy control to work properly.

The enthalpy control receives the indoor and return enthalpy from the outdoor and return air enthalpy sensors and provides a dry contact switch input to the PremierLink controller. A closed contact indicates that outside air is preferred to the return air. An open contact indicates that the economizer should remain at minimum position.
Indoor Air Quality (CO₂ Sensor)

The indoor air quality sensor accessory monitors space carbon dioxide (CO₂) levels. This information is used to monitor IAQ levels. Several types of sensors are available, for wall mounting in the space or in return duct, with and without LCD display, and in combination with space temperature sensors. Sensors use infrared technology to measure the levels of CO₂ present in the space air.

The CO₂ sensors are all factory set for a range of 0 to 2000 ppm and a linear mA output of 4 to 20. Refer to the instructions supplied with the CO₂ sensor for electrical requirements and terminal locations. See Fig. 45 for typical CO₂ sensor wiring schematic.

To accurately monitor the quality of the air in the conditioned air space, locate the sensor near a return-air grille (if present) so it senses the concentration of CO₂ leaving the space. The sensor should be mounted in a location to avoid direct breath contact.

Do not mount the IAQ sensor in drafty areas such as near supply ducts, open windows, fans, or over heat sources. Allow at least 3 ft (0.9 m) between the sensor and any corner. Avoid mounting the sensor where it is influenced by the supply air; the sensor gives inaccurate readings if the supply air is blown directly onto the sensor or if the supply air does not have a chance to mix with the room air before it is drawn into the return airstream.

Wiring the Indoor Air Quality Sensor

For each sensor, use two 2-conductor 18 AWG (American Wire Gage) twisted-pair cables (unshielded) to connect the separate isolated 24 vac power source to the sensor and to connect the sensor to the control board terminals.

Outdoor Air Quality Sensor (PNO 33ZCSENCO2 Plus Weatherproof Enclosure)

The outdoor air CO₂ sensor is designed to monitor carbon dioxide (CO₂) levels in the outside ventilation air and interface with the ventilation damper in an HVAC system. The OAQ sensor is packaged with an outdoor cover. (See Fig. 47.) The outdoor air CO₂ sensor must be located in the economizer outside air hood.

Wiring the Outdoor Air CO₂ Sensor

Wiring the Outdoor Air CO₂ Sensor — A dedicated power supply is required for this sensor. A two-wire cable is required to wire the dedicated power supply for the sensor. The two wires should be connected to the power supply and terminals 1 and 2.

To connect the sensor to the control, identify the positive (4 to 20 mA) and ground (SIG COM) terminals on the sensor. (See Fig. 45.) Connect the 4-20 mA terminal to terminal TB1-9 and connect the SIG COM terminal to terminal TB1-7. (See Fig. 46.)
Refer to Rooftop PremierLink Installation, Start-up, and Configuration Instructions (Form 33CS-58SI) for detailed configuration information.

Smoke Detector/Fire Shutdown (FSD)

This function is available only when PremierLink is configured for (Space) Sensor Mode. The unit is factory-wired for PremierLink FSD operation when PremierLink is factory-installed.

On 50TC units equipped with factory-installed Smoke Detector(s), the smoke detector controller implements the unit shutdown through its NC contact set connected to the unit’s LCTB input. The FSD function is initiated via the smoke detector’s Alarm NO contact set. The PremierLink communicates the smoke detector’s tripped status to the CCN building control. See Fig. 25 for unit smoke detector wiring.

Alarm state is reset when the smoke detector alarm condition is cleared and reset at the smoke detector in the unit.

If the PremierLink mode has been changed to Thermostat, disconnect the BLU lead (from LCTB DDC-1) at TB1-6 (Y2) and tape off before connecting the thermostat to TB1.

Filter Status Switch

This function is available only when PremierLink is configured for (Space) Sensor Mode.

PremierLink control can monitor return filter status in two ways: by monitoring a field-supplied/installed filter pressure switch or via supply fan runtime hours.

Using Switch Input

Install the dirty filter pressure switch according to switch manufacturer’s instructions, to measure pressure drop across the unit’s return filters. Connect one side of the switch’s NO contact set to LCTB’s THERMOSTAT-R terminal. Connect the other side of the NO contact set to TB1-10. Setpoint for Dirty Filter is set at the switch. (See Fig. 49.)

When the filter switch’s NO contact set closes as filter pressure drop increases (indicating dirt-laden filters), the input signal to PremierLink causes the filter status point to read “DIRTY”.

Using Filter Timer Hours

Refer to Rooftop PremierLink Installation, Start-up, and Configuration Instructions (Form 33CS-58SI) for instructions on using the PremierLink Configuration screens and on unit alarm sequence.

Supply Fan Status Switch

The PremierLink control can monitor supply fan operation through a field-supplied/installed differential pressure switch. This sequence will prevent (or interrupt) operation of unit cooling, heating and economizer functions until the pressure switch contacts are closed indicating proper supply fan operation.

Install the differential pressure switch in the supply fan section according to switch manufacturer’s instructions. Arrange the switch contact to be open on no flow and to close as pressure rises indicating fan operation.

Connect one side of the switch’s NO contact set to LCTB’s THERMOSTAT-R terminal. Connect the other side of the NO contact set to TB1-8. Setpoint for Supply Fan Status is set at the switch. (See Fig. 50.)

Remote Occupied Switch

The PremierLink control permits a remote timeclock to override the control’s on-board occupancy schedule and place the unit into Occupied mode. This function may also provide a “Door Switch” time delay function that will terminate cooling and heating functions after a 2-20 minute delay. (See Fig. 51.)

Connect one side of the NO contact set on the timeclock to LCTB’s THERMOSTAT-R terminal. Connect the other side of the timeclock contact to the unit’s TB1-2 terminal.
Refer to Rooftop PremierLink™ Installation, Start-up, and Configuration Instructions (Form 33CS-58SI) for additional information on configuring the PremierLink control for Door Switch timer function.

Power Exhaust (Output)

Connect the accessory Power Exhaust contactor coils(s) per Fig. 52.

```
Power Exhaust
PEC TAN ------ 15 ------ J8-3
LCTB THERMOSTAT
GRA ------ C

Fig. 52 - PremierLink Power Exhaust Output Connection
```

Space Relative Humidity Sensor

The RH sensor is not used with 50TC models at this time.

CCN Communication Bus

The PremierLink controller connects to the bus in a daisy chain arrangement. Negative pins on each component must be connected to respective negative pins, and likewise, positive pins on each component must be connected to respective positive pins. The controller signal pins must be wired to the signal ground pins. Wiring connections for CCN must be made at the 3-pin plug.

At any baud (9600, 19200, 38400 baud), the number of controllers is limited to 239 devices maximum. Bus length may not exceed 4000 ft, with no more than 60 total devices on any 1000-ft section. Optically isolated RS-485 repeaters are required every 1000 ft.

NOTE: Carrier device default is 9600 baud.

Communication Bus Wire Specifications

The CCN Communication Bus wiring is field-supplied and field-installed. It consists of shielded 3-conductor cable with drain (ground) wire. The cable selected must be identical to the CCN Communication Bus wire used for the entire network.

See Table 10 for recommended cable.

Table 10 – Recommended Cables

<table>
<thead>
<tr>
<th>MANUFACTURER</th>
<th>CABLE PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha</td>
<td>2413 or 5463</td>
</tr>
<tr>
<td>American</td>
<td>A22503</td>
</tr>
<tr>
<td>Belden</td>
<td>8772</td>
</tr>
<tr>
<td>Columbia</td>
<td>02525</td>
</tr>
</tbody>
</table>

NOTE: Conductors and drain wire must be at least 20 AWG, stranded, and tinned copper. Individual conductors must be insulated with PVC, PVC/nylon, vinyl, Teflon, or polyethylene. An aluminum/polyester 100% foil shield and an outer jacket of PVC, PVC/nylon, chrome vinyl, or Teflon with a minimum operating temperature range of -20 C to 60 C is required. Do not run communication wire in the same conduit as or next to any AC voltage wiring.

The communication bus shields must be tied together at each system element. If the communication bus is entirely within one building, the resulting continuous shield must be connected to ground at only one single point. If the communication bus cable exits from one building and enters another building, the shields must be connected to the grounds at a lightning suppressor in each building (one point only).

Connecting CCN Bus

NOTE: When connecting the communication bus cable, a color code system for the entire network is recommended to simplify installation and checkout. See Table 11 for the recommended color code.

Table 11 – Color Code Recommendations

<table>
<thead>
<tr>
<th>SIGNAL TYPE</th>
<th>CCN BUS WIRE COLOR</th>
<th>CCN PLUG PIN NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Red</td>
<td>1</td>
</tr>
<tr>
<td>Ground</td>
<td>White</td>
<td>2</td>
</tr>
<tr>
<td>–</td>
<td>Black</td>
<td>3</td>
</tr>
</tbody>
</table>

Connect the CCN (+) lead (typically RED) to the unit’s TB1-12 terminal. Connect the CCN (ground) lead (typically WHT) to the unit’s TB1-14 terminal. Connect the CCN (-) lead (typically BLK) to the unit’s TB1-16 terminal. (See Fig. 53.)

```
CCN Bus
+ (RED) -------- 12 ------ J2-1
GND (WHT) ------ 14 ------ J2-2
– (BLK) -------- 16 ------ J2-3

Fig. 53 - PremierLink CCN Bus Connections
```

RTU-MP CONTROL SYSTEM

The RTU-MP controller, provides expanded stand-alone operation of the HVAC system plus connection and control through communication with several Building Automation Systems (BAS) through popular third-party network systems. (See Fig. 54.) The available network systems are BACnet MP/TP, Modbus and Johnson J2. Communication with LonWorks is also possible by adding an accessory interface card to the RTU-MP. Selection of the communication protocol and baud rate are made at on-board DIP switches.

Carrier’s diagnostic display tools BACviewer® Handheld and Virtual BACview (loaded on a portable PC) must be used with the RTU-MP controller. Connection to the RTU-MP board is at the J12 access port. (See Fig. 54.)
The RTU-MP control is factory-mounted in the 50TC unit’s main control box, to the left of the LCTB. (See Fig. 55.) Factory wiring is completed through harnesses connected to the LCTB. Field connections for RTU-MP sensors will be made at the Phoenix connectors on the RTU-MP board. The factory-installed RTU-MP control includes the supply-air temperature (SAT) sensor. The outdoor air temperature (OAT) sensor is included in the FIOP/accessory EconoMi$er 2 package.

Refer to Table 12, RTU-MP Controller Inputs and Outputs for locations of all connections to the RTU-MP board.
Fig. 55 - RTU-MP System Control Wiring Diagram
Table 12 – RTU-MP Controller Inputs and Outputs

<table>
<thead>
<tr>
<th>POINT NAME</th>
<th>BACnet OBJECT NAME</th>
<th>TYPE OF I/O</th>
<th>CONNECTION PIN NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Temperature Sensor</td>
<td>sptsens</td>
<td>AI (10K Thermistor)</td>
<td>J20 – 1, 2</td>
</tr>
<tr>
<td>Supply Air Temperature</td>
<td>sat</td>
<td>AI (10K Thermistor)</td>
<td>J2 – 1, 2</td>
</tr>
<tr>
<td>Local Outside Air Temperature Sensor</td>
<td>oatsens</td>
<td>AI (10K Thermistor)</td>
<td>J2 – 3, 4</td>
</tr>
<tr>
<td>Space Temperature Offset Pot</td>
<td>sptopot</td>
<td>AI (100K Potentiometer)</td>
<td>J20 – 3</td>
</tr>
<tr>
<td>Indoor Air Quality</td>
<td>iaq</td>
<td>AI (4 – 20 ma)</td>
<td>J4 – 2, 3</td>
</tr>
<tr>
<td>Outdoor Air Quality</td>
<td>oaq</td>
<td>AI (4 – 20 ma)</td>
<td>J4 – 5, 6</td>
</tr>
<tr>
<td>Safety Chain Feedback</td>
<td>safety</td>
<td>DI (24 VAC)</td>
<td>J1 – 9</td>
</tr>
<tr>
<td>Compressor Safety</td>
<td>compstat</td>
<td>DI (24 VAC)</td>
<td>J1 – 2</td>
</tr>
<tr>
<td>Fire Shutdown</td>
<td>firedown</td>
<td>DI (24 VAC)</td>
<td>J1 – 10</td>
</tr>
<tr>
<td>Enthalpy Switch</td>
<td>enthalpy</td>
<td>DI (24 VAC)</td>
<td>J2 – 6, 7</td>
</tr>
<tr>
<td>Humidistat Input Status</td>
<td>humstat</td>
<td>DI (24 VAC)</td>
<td>J5 – 7, 8</td>
</tr>
<tr>
<td>CONFIGURABLE INPUTS*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Relative Humidity</td>
<td>sp rh</td>
<td>AI (4 – 20 ma)</td>
<td>J4 – 2,3 or J4 – 5,6</td>
</tr>
<tr>
<td>Outside Air Relative Humidity</td>
<td>oarh</td>
<td>AI (4 – 20 ma)</td>
<td></td>
</tr>
<tr>
<td>Supply Fan Status</td>
<td>fanstat</td>
<td>DI (24 VAC)</td>
<td></td>
</tr>
<tr>
<td>Filter Status</td>
<td>filtstat</td>
<td>DI (24 VAC)</td>
<td></td>
</tr>
<tr>
<td>Remote Occupancy Input</td>
<td>remocc</td>
<td>DI (24 VAC)</td>
<td></td>
</tr>
<tr>
<td>OUTPUTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economizer Commanded Position</td>
<td>econocmd</td>
<td>4 – 20ma</td>
<td>J2 – 5</td>
</tr>
<tr>
<td>Supply Fan Relay State</td>
<td>sf</td>
<td>DO Relay (24VAC, 1A)</td>
<td>J1 – 4</td>
</tr>
<tr>
<td>Compressor 1 Relay State</td>
<td>comp_1</td>
<td>DO Relay (24VAC, 1A)</td>
<td>J1 – 8</td>
</tr>
<tr>
<td>Compressor 2 Relay State</td>
<td>comp_2</td>
<td>DO Relay (24VAC, 1A)</td>
<td>J1 – 7</td>
</tr>
<tr>
<td>Heat Stage 1 Relay State</td>
<td>heat_1</td>
<td>DO Relay (24VAC, 1A)</td>
<td>J1 – 6</td>
</tr>
<tr>
<td>Heat Stage 2 Relay State</td>
<td>heat_2</td>
<td>DO Relay (24VAC, 1A)</td>
<td>J1 – 5</td>
</tr>
<tr>
<td>Power Exhaust Relay State</td>
<td>aux_2</td>
<td>DO Relay (24VAC, 1A)</td>
<td>J11 – 3</td>
</tr>
<tr>
<td>Dehumidification Relay State</td>
<td>humizer</td>
<td>DO Relay (24VAC, 1A)</td>
<td>J11 – 7, 8</td>
</tr>
</tbody>
</table>

LEGEND

AI – Analog Input
AO – Analog Output
DI – Discrete Input
DO – Discrete Output

* These inputs (if installed) take the place of the default input on the specific channel according to schematic. Parallel pins J5 – 1 = J2 – 6, J5 – 3 = J1 – 10, J5 – 5 = J1 – 2 are used for field installation.

Refer to the input configuration and accessory sections for more detail.

NOTE: Refer to RTU-MP Controls, Start-Up, Operation, and Troubleshooting Instructions (Form 48-50H-T-2T) for complete configuration of RTU-MP, operating sequences and troubleshooting information. Refer to **RTU-MP 3rd Party Integration Guide** for details on configuration and troubleshooting of connected networks. Have a copy of these manuals available at unit start-up.

The RTU-MP controller requires the use of a Carrier space sensor. A standard thermostat cannot be used with the RTU-MP system.

Supply Air Temperature (SAT) Sensor

On FIOP-equipped 50TC unit, the unit is supplied with a supply-air temperature (SAT) sensor (33ZCSENSAT). This sensor is a tubular probe type, approx 6-inches (12.7 mm) in length. It is a nominal 10-k ohm thermistor. See Table 6 for temperature-resistance characteristic.

The SAT is factory-wired. The SAT probe is wire-tied to the supply-air opening (on the horizontal opening end) in its shipping position. Remove the sensor for installation. Re-position the sensor in the flange of the supply-air opening or in the supply air duct (as required by local codes). Drill or punch a 1/2-in. hole in the flange or duct. Use two field-supplied, self-drilling screws to secure the sensor probe in a horizontal orientation. (See Fig. 36.)

Outdoor Air Temperature (OAT) Sensor

The OAT is factory-mounted in the EconoMi$er 2 (FIOP or accessory). It is a nominal 10k ohm thermistor attached to an eyelet mounting ring. See Table 6 for temperature-resistance characteristic.

EconoMi$er 2

The RTU-MP control is used with EconoMi$er 2 (option or accessory) for outdoor air management. The damper position is controlled directly by the RTU-MP control; EconoMi$er 2 has no internal logic device.
Outdoor air management functions can be enhanced with field-installation of these accessory control devices:

- Enthalpy control (outdoor air or differential sensors)
- Space CO₂ sensor
- Outdoor air CO₂ sensor

Field Connections

Field connections for accessory sensors and input devices are made at the RTU-MP, at plugs J1, J2, J4, J5, J11 and J20. All field control wiring that connects to the RTU-MP must be routed through the raceway built into the corner post as shown in Fig. 56. The raceway provides the UL required clearance between high- and low-voltage wiring. Pass the control wires through the hole provided in the corner post, then feed the wires thorough the raceway to the RTU-MP. Connect to the wires to the removable Phoenix connectors and then reconnect the connectors to the board.

Space Temperature (SPT) Sensors

A field-supplied Carrier space temperature sensor is required with the RTU-MP to monitor space temperature. There are 3 sensors available for this application:

- 33ZCT55SPT, space temperature sensor with override button
- 33ZCT56SPT, space temperature sensor with override button and setpoint adjustment
- 33ZCT59SPT, space temperature sensor with LCD (liquid crystal display) screen, override button, and setpoint adjustment

Use 20 gauge wire to connect the sensor to the controller. The wire is suitable for distances of up to 500 ft. Use a three-conductor shielded cable for the sensor and setpoint adjustment connections. If the setpoint adjustment (slidebar) is not required, then an unshielded, 18 or 20 gauge, two-conductor, twisted pair cable may be used.

Connect T-55

Connect T-55 - See Fig. 38 for typical T-55 internal connections. Connect the T-55 SEN terminals to RTU-MP J20-1 and J20-2. (See Fig. 57.)
Economizer Controls

Outdoor Air Enthalpy Control (PNO HH57AC077)
The enthalpy control (HH57AC077) is available as a field-installed accessory to be used with the EconoMi$er2 damper system. The outdoor air enthalpy sensor is part of the enthalpy control. (The separate field-installed accessory return air enthalpy sensor (HH57AC078) is required for differential enthalpy control. See below.)

Locate the enthalpy control in the economizer hood. Locate two GRA leads in the factory harness and connect these leads to enthalpy control sensors 2 and 3. (See Fig. 42.) Connect the enthalpy control power input terminals to economizer actuator power leads RED (connect to TR) and BLK (connect to TR1).

The outdoor enthalpy changeover setpoint is set at the enthalpy controller.

The enthalpy control receives the outdoor air enthalpy from the outdoor air enthalpy sensor and provides a dry contact switch input to the RTU-MP controller. A closed contact indicates that outside air is preferred to the return air. An open contact indicates that the economizer should remain at minimum position.

Differential Enthalpy Control
Differential enthalpy control is provided by sensing and comparing the outside air and return air enthalpy conditions. Install the outdoor air enthalpy control as described above. Add and install a return air enthalpy sensor.

Return Air Enthalpy Sensor
Mount the return-air enthalpy sensor (HH57AC078) in the return-air duct. The return air sensor is wired to the enthalpy controller (HH57AC077). (See Fig. 44.)

To wire the return air enthalpy sensor, perform the following:
1. Use a 2-conductor, 18 or 20 AWG, twisted pair cable to connect the return air enthalpy sensor to the enthalpy controller.
2. At the enthalpy control remove the factory-installed resistor from the (SR) and (+) terminals.
3. Connect the field-supplied RED wire to (+) spade connector on the return air enthalpy sensor and the (SR+) terminal on the enthalpy controller. Connect the BLK wire to (S) spade connector on the return air enthalpy sensor and the (SR) terminal on the enthalpy controller.

NOTE: The enthalpy control must be set to the “D” setting for differential enthalpy control to work properly.

The enthalpy control receives the indoor and return enthalpy from the outdoor and return air enthalpy sensors and provides a dry contact switch input to the RTU-MP controller. A closed contact indicates that outside air is preferred to the return air. An open contact indicates that the economizer should remain at minimum position.

Indoor Air Quality (CO₂ Sensor)
The indoor air quality sensor accessory monitors space carbon dioxide (CO₂) levels. This information is used to monitor IAQ levels. Several types of sensors are available, for wall mounting in the space or in return duct, with and without LCD display, and in combination with space temperature sensors. Sensors use infrared technology to measure the levels of CO₂ present in the space air.

The CO₂ sensors are all factory set for a range of 0 to 2000 ppm and a linear mA output of 4 to 20. Refer to the instructions supplied with the CO₂ sensor for electrical requirements and terminal locations. See Fig. 41 for typical CO₂ sensor wiring schematic.

To accurately monitor the quality of the air in the conditioned air space, locate the sensor near a return-air grille (if present) so it senses the concentration of CO₂ leaving the space. The sensor should be mounted in a location to avoid direct breath contact.

Do not mount the IAQ sensor in drafty areas such as near supply ducts, open windows, fans, or over heat sources. Allow at least 3 ft (0.9 m) between the sensor and any corner. Avoid mounting the sensor where it is influenced by the supply air; the sensor gives inaccurate readings if the supply air is blown directly onto the sensor or if the supply air does not have a chance to mix with the room air before it is drawn into the return airstream.

Wiring the Indoor Air Quality Sensor
For each sensor, use two 2-conductor 18 AWG (American Wire Gauge) twisted-pair cables (unshielded) to connect the separate isolated 24 vac power source to the sensor and to connect the sensor to the control board terminals.

To connect the sensor to the control, identify the positive (4 to 20 mA) and ground (SIG COM) terminals on the sensor. (See Fig. 45.) Connect the 4-20 mA terminal to RTU-MP J4-2 and connect the SIG COM terminal to RTU-MP J4-3. (See Fig. 60.)

\[\text{IAQ Sensor} \]

\[\begin{array}{c}
\text{SEN} \\
\text{COM}
\end{array} \]

\[\begin{array}{c}
\text{J4-2} \\
\text{J4-3}
\end{array} \]

\[\text{Fig. 60 - RTU-MP / Indoor CO₂ Sensor} \]

\[\text{(33ZCSENCO2) Connections} \]

Outdoor Air Quality Sensor (PNO 33ZCSENCO2 Plus Weatherproof Enclosure)
The outdoor air CO₂ sensor is designed to monitor carbon dioxide (CO₂) levels in the outside ventilation air and interface with the ventilation damper in an HVAC system. The OAQ sensor is packaged with an outdoor cover. (See Fig. 47.) The outdoor air CO₂ sensor must be located in the economizer outside air hood.
Wiring the Outdoor Air CO₂ Sensor

A dedicated power supply is required for this sensor. A two-wire cable is required to wire the dedicated power supply for the sensor. The two wires should be connected to the power supply and terminals 1 and 2.

To connect the sensor to the control, identify the positive (4 to 20 mA) and ground (SIG COM) terminals on the OAQ sensor. (See Fig. 45.) Connect the 4-20 mA terminal to RTU-MP J4-5. Connect the SIG COM terminal to RTU-MP J4-6. (See Fig. 61.)

On 50TC units equipped with factory-installed Smoke Detector(s), the smoke detector controller implements the unit shutdown through its NC contact set connected to the unit’s LCTB input. The FSD function is initiated via the smoke detector’s Alarm NO contact set. The PremierLink communicates the smoke detector’s tripped status to the CCN building control. See Fig. 22 for unit smoke detector wiring.

The Fire Shutdown Switch configuration, MENU → Config → Inputs → input 5, identifies the normally open status of this input when there is no fire alarm.

Alarm state is reset when the smoke detector alarm condition is cleared and reset at the smoke detector in the unit.

Connecting Discrete Inputs

Filter Status

The filter status accessory is a field-installed accessory. This accessory detects plugged filters. When installing this accessory, the unit must be configured for filter status by setting MENU → Config → Inputs → input 3, 5, 8, or 9 to Filter Status and normally open (N/O) or normally closed (N/C). Input 8 or 9 is recommended for easy of installation. Refer to Fig. 54 and Fig. 55 for wire terminations at J5.

Fan Status

The fan status accessory is a field-installed accessory. This accessory detects when the indoor fan is blowing air. When installing this accessory, the unit must be configured for fan status by setting MENU → Config → Inputs → input 3, 5, 8, or 9 to Fan Status and normally open (N/O) or normally closed (N/C). Input 8 or 9 is recommended for easy of installation. Refer to Fig. 54 and Fig. 55 for wire terminations at J5.

Remote Occupancy

The remote occupancy accessory is a field-installed accessory. This accessory overrides the unoccupied mode and puts the unit in occupied mode. When installing this accessory, the unit must be configured for remote occupancy by setting MENU → Config → Inputs → input 3, 5, 8, or 9 to Remote Occupancy and normally open (N/O) or normally closed (N/C).

Also set MENU → Schedules → occupancy source to DI on/off. Input 8 or 9 is recommended for easy of installation. Refer to Fig. 54 and Fig. 55 and Table 12 for wire terminations at J5.

Power Exhaust (Output)

Connect the accessory Power Exhaust contactor coil(s) per Fig. 62.

Communication Wiring - Protocols

General

Protocols are the communication languages spoken by control devices. The main purpose of a protocol is to communicate information in the most efficient method possible. Different protocols exist to provide different kinds of information for different applications. In the BAS application, many different protocols are used, depending on manufacturer. Protocols do not change the function of a controller; just make the front end user different.

The RTU-MP can be set to communicate on four different protocols: BACnet, Modbus, N2, and LonWorks. Switch 3 (SW3) on the board is used to set protocol and baud rate. Switches 1 and 2 (SW1 and SW2) are used to set the board’s network address. See Fig 63 for the switch setting per protocol. The 3rd party connection to the RTU-MP is through plug J19. Refer to the RTU-MP 3rd Party Integration Guide for more detailed information on protocols, 3rd party wiring, and networking.

NOTE: Power must be cycled after changing the SW1-3 switch settings.

BACnet MS/TP

BACnet Master Slave/Token Passing (MS/TP) is used for communicating BACnet over a sub-network of BACnet-only controllers. This is the default Carrier communications protocol. Each RTU-MP module acts as an MS/TP Master. The speed of an MS/TP network can range from 9600 to 76.8K baud. Physical Addresses can be set from 01 to 99.
SW3 Protocol Selection

<table>
<thead>
<tr>
<th>PROTOCOL</th>
<th>DS8</th>
<th>DS7</th>
<th>DS6</th>
<th>DS5</th>
<th>DS4</th>
<th>DS3</th>
<th>DS2</th>
<th>DS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACnet MS/TP</td>
<td>Unused</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>Select Baud</td>
<td>Select Baud</td>
</tr>
<tr>
<td>(Master)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modbus</td>
<td>Unused</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>(Slave)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2 (Slave)</td>
<td>Unused</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>LonWorks</td>
<td>Unused</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

NOTE:
DS = Dip Switch
BACnet MS/TP SW3 example shown

Baud Rate Selections

<table>
<thead>
<tr>
<th>BAUD RATE</th>
<th>DS2</th>
<th>DS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>9600</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>19200</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>38400</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>76800</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>

Modbus

The RTU-MP module can speak the Modicon Modbus RTU Protocol as described in the Modicon Modbus Protocol Reference Guide, PI-MBUS-300 Rev. J. The speed of a Modbus network can range from 9600 to 76.8K baud. Physical Addresses can be set from 01 to 99.

Johnson N2

N2 is not a standard protocol, but one that was created by Johnson Controls, Inc. that has been made open and available to the public. The speed of N2 network is limited to only 9600 baud. Physical Addresses can be set from 01 to 99.

LonWorks

 LonWorks is an open protocol that requires the use of Echelon’s Neuron microprocessor to encode and decode the LonWorks packets. In order to reduce the cost of adding that hardware on every module, a separate LonWorks Option Card (LON-OC) was designed to connect to the RTU-MP.

This accessory card is needed for LonWorks and has to be ordered and connected using the ribbon cable to plug J15. The RTU-MP’s baud rate must be set to 38.4k to communicate with the LON-OC. The address switches (SW1 & SW2) are not used with LonWorks.

Local Access

BACview® Handheld

The BACview® is a keypad/display interface used to connect to the RTU-MP to access the control information, read sensor values, and test the RTU. (See Fig. 64.) This is an accessory interface that does not come with the MP controller and can only be used at the unit. Connect the BACview® to the RTU-MP’s J12 local access port. There are 2 password protected levels in the display (User and Admin). The user password is defaulted to 0000 but can be changed. The Admin password is 1111 and cannot be changed. There is a 10 minute auto logout if a screen is left idle. See RTU-MP Controls, Start-Up, Operation, and Troubleshooting Instructions (Form 48-50H-T-2T), Appendix A for navigation and screen content.

Virtual BACview

Virtual BACview is a freeware computer program that functions as the BACview® Handheld. The USB Link interface (USB-L) is required to connect a computer to the RTU-MP board. The link cable connects a USB port to the J12 local access port. This program functions and operates identical to the handheld.

RTU-MP Troubleshooting

Communication LEDs

The LEDs indicate if the controller is speaking to the devices on the network. The LEDs should reflect communication traffic based on the baud rate set. The higher the baud rate the more solid the LEDs will appear.
Table 13 – LEDs

The LEDs on the RTU-MP show the status of certain functions

<table>
<thead>
<tr>
<th>If this LED is on...</th>
<th>Status is...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>The RTU MP has power</td>
</tr>
<tr>
<td>Rx</td>
<td>The RTU MP is receiving data from the network segment</td>
</tr>
<tr>
<td>Tx</td>
<td>The RTU MP is transmitting data over the network segment</td>
</tr>
<tr>
<td>DO#</td>
<td>The digital output is active</td>
</tr>
</tbody>
</table>

The **Run** and **Error** LEDs indicate control module and network status

<table>
<thead>
<tr>
<th>If Run LED shows...</th>
<th>And Error LED shows...</th>
<th>Status is...</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 flashes per second</td>
<td>Off</td>
<td>Normal</td>
</tr>
<tr>
<td>2 flashes per second</td>
<td>2 flashes, alternating with Run LED</td>
<td>Five minute auto-restart delay after system error</td>
</tr>
<tr>
<td>2 flashes per second</td>
<td>3 flashes, then off</td>
<td>Control module has just been formatted</td>
</tr>
<tr>
<td>2 flashes per second</td>
<td>4 flashes, then pause</td>
<td>Two or more devices on this network have the same ARC156 network address</td>
</tr>
<tr>
<td>2 flashes per second</td>
<td>On</td>
<td>Exec halted after frequent system errors or control programs halted</td>
</tr>
<tr>
<td>5 flashes per second</td>
<td>On</td>
<td>Exec start-up aborted, Boot is running</td>
</tr>
<tr>
<td>5 flashes per second</td>
<td>Off</td>
<td>Firmware transfer in progress, Boot is running</td>
</tr>
<tr>
<td>7 flashes per second</td>
<td>7 flashes per second, alternating with Run LED</td>
<td>Ten second recovery period after brownout</td>
</tr>
<tr>
<td>14 flashes per second</td>
<td>14 flashes per second, alternating with Run LED</td>
<td>Brownout</td>
</tr>
</tbody>
</table>
| On | On | Failure. Try the following solutions:
 • Turn the RTU-MP off, then on.
 • Format the RTU-MP.
 • Download memory to the RTU-MP.
 • Replace the RTU-MP. |
<table>
<thead>
<tr>
<th>POINT NAME</th>
<th>BACnet OBJECT NAME</th>
<th>ACTION TAKEN BY CONTROL</th>
<th>RESET METHOD</th>
<th>PROBABLE CAUSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Chain Alarm</td>
<td>safety_chain</td>
<td>Alarm Generated</td>
<td>Automatic</td>
<td>Over load Indoor Fan or Electric Heater overheat.</td>
</tr>
<tr>
<td>Fire Shutdown Alarm</td>
<td>fire_alarm</td>
<td>Alarm Generated</td>
<td>Automatic</td>
<td>Smoke detected by smoke detector or configuration incorrect</td>
</tr>
<tr>
<td>Space Temp Sensor Failure</td>
<td>spt_alarm</td>
<td>Alarm Generated</td>
<td>Automatic</td>
<td>Faulty, shorted, or open thermistor caused by wiring error or loose connection.</td>
</tr>
<tr>
<td>SAT Sensor Alarm</td>
<td>sat_alarm</td>
<td>Alarm Generated</td>
<td>Automatic</td>
<td>Faulty, shorted, or open thermistor caused by wiring error or loose connection.</td>
</tr>
<tr>
<td>High Space Temp Alarm</td>
<td>spt_hi</td>
<td>Alarm Generated</td>
<td>Automatic</td>
<td>The space temperature has risen above the cool setpoint by more than the desired amount.</td>
</tr>
<tr>
<td>Low Space Temp Alarm</td>
<td>spt_lo</td>
<td>Alarm Generated</td>
<td>Automatic</td>
<td>The space temperature has dropped below the heat setpoint by more than the desired amount.</td>
</tr>
<tr>
<td>High Supply Air Temp</td>
<td>sat_hi</td>
<td>Alarm Generated</td>
<td>Automatic</td>
<td>SAT is greater than 160 degrees for more than 5 minutes.</td>
</tr>
<tr>
<td>Low Supply Air Temp</td>
<td>sat_lo</td>
<td>Alarm Generated</td>
<td>Automatic</td>
<td>The supply air temperature is below 35°F for more than 5 minutes.</td>
</tr>
<tr>
<td>Supply Fan Failed to Start</td>
<td>sf_fail</td>
<td>Alarm Generated</td>
<td>Automatic</td>
<td>Tripped Circuit Breaker, Broken belt, Bad indoor fan motor, Configuration incorrect, Bad fan status switch.</td>
</tr>
<tr>
<td>Supply Fan In Hand</td>
<td>sf_hand</td>
<td>Alarm Generated</td>
<td>Automatic</td>
<td>Bad Fan Status Switch, Configuration incorrect.</td>
</tr>
<tr>
<td>Compressor Safety Alarm</td>
<td>dx_compstat</td>
<td>Alarm Generated</td>
<td>Automatic</td>
<td>Compressor would not start.</td>
</tr>
<tr>
<td>Setpoint Slider Alarm</td>
<td>slide_alarm</td>
<td>Alarm Generated Offset set to zero</td>
<td>Automatic</td>
<td>STO sensor is open or shorted for more than 5 seconds.</td>
</tr>
<tr>
<td>Dirty Filter Alarm</td>
<td>filter</td>
<td>Alarm Generated</td>
<td>Automatic</td>
<td>Dirty Filter, supply fan run time exceeded, filter switch configuration wrong.</td>
</tr>
<tr>
<td>Switch Configuration Alarm</td>
<td>sw_cfg_alarm</td>
<td>Alarm Generated Disable misconfigured switch functions</td>
<td>Configure correctly</td>
<td>More than one binary input is configured for the same purpose. More then one discrete input is configured to provide the same function.</td>
</tr>
<tr>
<td>Misconfigured Analog Input</td>
<td>an_cfg_alarm</td>
<td>Alarm Generated Disable 4 selectable analog inputs</td>
<td>Configure correctly</td>
<td>More then one analog input is configured to provide the same function.</td>
</tr>
<tr>
<td>OAT Sensor Alarm</td>
<td>oat_alarm</td>
<td>Alarm Generated</td>
<td>Automatic</td>
<td>Faulty, shorted, or open thermistor caused by wiring error or loose connection.</td>
</tr>
<tr>
<td>Space RH Sensor Alarm</td>
<td>sprh_alarm</td>
<td>Alarm Generated</td>
<td>Automatic</td>
<td>Sensor reading is out of range. Bad sensor, bad wiring, or sensor configured incorrectly.</td>
</tr>
<tr>
<td>Outdoor RH Sensor Alarm</td>
<td>oarh_alarm</td>
<td>Alarm Generated</td>
<td>Automatic</td>
<td>Sensor reading is out of range. Bad sensor, bad wiring, or sensor configured incorrectly.</td>
</tr>
<tr>
<td>High Space Humidity</td>
<td>sprh_hi</td>
<td>Alarm Generated</td>
<td>Automatic</td>
<td>IRH is greater than 70% for more than 10 minutes.</td>
</tr>
<tr>
<td>Low Space Humidity</td>
<td>sprh_lo</td>
<td>Alarm Generated</td>
<td>Automatic</td>
<td>IRH is less than 35% for more than 10 minutes.</td>
</tr>
<tr>
<td>IAQ Sensor Alarm</td>
<td>iaq_alarm</td>
<td>Alarm Generated</td>
<td>Automatic</td>
<td>Sensor reading is out of range. Bad sensor, bad wiring, or sensor configured incorrectly.</td>
</tr>
<tr>
<td>OAQ Sensor Alarm</td>
<td>oaq_alarm</td>
<td>Alarm Generated Set OAQ to 400</td>
<td>Automatic</td>
<td>Sensor reading is out of range. Bad sensor, bad wiring, or sensor configured incorrectly.</td>
</tr>
<tr>
<td>High Carbon Dioxide Level</td>
<td>co2_hi</td>
<td>Alarm Generated</td>
<td>Automatic</td>
<td>CO2 reading is above 1200ppm.</td>
</tr>
<tr>
<td>Supply Fan Runtime Alarm</td>
<td>sf_rntm</td>
<td>Alarm Generated</td>
<td>clear the timer</td>
<td>Supply fan run time exceeded user defined limit.</td>
</tr>
<tr>
<td>Compressor 1 Runtime Alarm</td>
<td>dx1_rntm</td>
<td>Alarm Generated</td>
<td>clear the timer</td>
<td>Compressor run time limit is exceeded.</td>
</tr>
<tr>
<td>Compressor 2 Runtime Alarm</td>
<td>dx2_rntm</td>
<td>Alarm Generated</td>
<td>clear the timer</td>
<td>Compressor run time limit is exceeded.</td>
</tr>
</tbody>
</table>
Alarms

Alarms can be checked through the network and/or the local access. All the alarms are listed in Table 14 with name, object name, action taken by control, reset method, and probable cause. There are help screens for each alarm on the local access display and listed in RTU-MP Controls, Start-Up, Operation, and Troubleshooting Instructions (Form 48-50H-T-2T), Appendix A: Help Screens. Some alarms are explained in detail below.

Safety Chain Alarm

This alarm occurs immediately if the supply-fan internal overload trips or if an electric-heat limit switch trips. The Unit Status will be Disable and the System Mode will be Disable. When this happens LCTB (R terminal) will not have 24 VAC, but the RTU-MP board will still be powered. All unit operations stop immediately and will not restart until the alarm automatically clears. There are no configurations for this alarm; it is all based on internal wiring. This alarm will never occur if Safety Chain Alarm is active.

Fire Shutdown Alarm

This alarm occurs immediately when the smoke detector senses smoke. The Unit Status will be Shutdown and the System Mode will be Disable. All unit operations stop immediately and will not restart until the alarm automatically clears. If there is not a smoke detector installed or the smoke detector did not trip, check input configurations.

Space Temp Sensor Failure

This alarm occurs if the space sensor wired to the RTU-MP is disconnected or shorted for more than 10 seconds. When this occurs the Unit Status will be Shutdown and the System Mode will be Run. Sensor, sensor connections, wiring, board connection, and configurations should be checked for faults or errors. Alarm will reset automatically when cause is fixed.

SAT Sensor Alarm

This alarm occurs immediately when the supply air temperature sensor wired to the RTU-MP is disconnected or shorted. When this occurs the Unit Status will be Shutdown and the System Mode will be Run. Sensor, sensor connections, wiring, board connection, and configurations should be checked for faults or errors. Alarm will reset automatically when cause is fixed.

Switch Configuration Alarm

This occurs if more than one binary input (inputs 3, 5, 8, and 9) is configured for the same function. When this happens the two inputs (or more) configured wrong will be disabled as an inputs. This alarm will automatically be cleared when configuration is corrected.

An example of this would be: Input 3 = Compressor Safety, input 5 = Fan Status, input 8 = Fan Status, and input 9 = Humidistat; the alarm would be active, unit would run, compressor safety and humidistat would function normally, and Fan Status (inputs 5 & 8) will be interpreted as "No Function."

Misconfigured Analog Input

This occurs if more than one analog input (inputs 1 & 2) is configured for the same sensor. When this happens the two inputs will be disabled as inputs. This alarm will automatically be cleared when configuration is corrected.

An example of this would be: Input 1 = IAQ Sensor, input 2 = IAQ Sensor; the alarm would be active, unit would run, but the IAQ Sensor (inputs 1 & 2) will be interpreted as “No Function.”

Third Party Networking

Third party communication and networking troubleshooting should be done by or with assistance from the front end third party technician. A Module Status Report (Modstat) can be run from the BACview®; see Table 15 to perform. This lists information about the board status and networking state. For basic troubleshooting, see Table 16. Refer to the RTU-MP 3rd Party Integration Guide for additional information.

BACnet MS/TP

1. Verify that the BAS and controller are both set to speak the BACnet MS/TP protocol. The protocol of the controller is set via SW3 (switches 3, 4, 5, and 6). The protocol can also be verified by getting a Modstat of the controller through the BACview. Hit the “FN” key and the ‘.’ key at the same time to pull up a Modstat. Scroll to the bottom of the page and there is a section entitled “Network Communications.” The active protocol and baud rate will be shown in this section.

2. Verify that the BAS and controller are set for the same baud rate. The baud rate of the controller is set via SW3 (switches 1 and 2). The baud rate can also be verified via the BACview by obtaining a Modstat. (See Fig. 65.)

3. Verify that the BAS is configured to speak 2-wire EIA-485 to the controller. The BAS may have to configure jumper or DIP switches on their end.

4. Verify that the BAS and the controller have the same communication settings (8 data bits, No Parity, and 1 stop bit).

5. Verify that the controller has a unique MAC address on the MS/TP bus. The controller’s MS/TP MAC address is set by its rotary address switches.

6. Verify proper wiring between the BAS and the controller.

7. Verify that the BAS is reading or writing to the proper BACnet objects in the controller. Download the latest points list for the controller to verify.

8. Verify that the BAS is sending his requests to the proper MS/TP MAC address of our controller.

9. Present the BAS company with a copy of our controller’s BACnet PICS so that they know which BACnet commands are supported.
Device Instance: 0160001

1 PRGs loaded. 1 PRGs running.

Module status:
Firmware sections validated in flash memory
==
Boot16-H - v2.06:001 Jun 19 2007
RTU-MP DRIVER - v2.09:050 Jun 26 2007

Reset counters:
 11 Power failures
 0 Brownouts
 18 Commanded warm boots
 22 Commanded cold boots
 0 System errors
 0 Watchdog timeouts

System error message history: Type Specific
Warning message history:
Information message history:
 POWERUP: BACnet reinitialize warmstart 06/29/07 10:49:40
 Menu file not found. 06/29/07 10:48:35

ARC156 reconfigurations during the last hour (cleared upon reset):
 Total 0
 Initiated by this node 0

Core board hardware:
 Type=147, board=34, manufactured on 05/14/2007, S/N 21A740188N
 RAM: 1024 kBytes; FLASH: 1024 kBytes, type = 3

Base board hardware:
 Type=147, board=71, manufactured on 05/14/2007, S/N RMP750037N

Largest free heap space = 65536.

Database size = 742082 , used = 352162, free = 389920.

Raw physical switches: 0x01280000

Module Communications:
 Network Protocol=BACnet MSTP Master
 Network Baud Rate=9600 bps

Fig. 65 - Module Status Report (Modstat) Example

10. In certain situations, it may be necessary to tweak the MS/TP Protocol timing settings through the BACview6. There are two settings that may be tweaked:

 • **Max Masters**: Defines the highest MS/TP Master MAC address on this MS/TP network. For example, if there are 3 master nodes on an MS/TP network, and their MAC addresses are 1, 8, and 16, then Max Masters would be set to 16 (since this is the highest MS/TP MAC address on the network). This property optimizes MS/TP network communications by preventing token passes and “poll for master” requests to non-existent Master nodes (i.e., in the above example, MAC address 16 would know to pass the token back to MAC address 1 instead of counting up to MAC address 127). Each MS/TP master node on the network must have their Max Masters set to this same value. The default is 127.
Table 15 – Manufacture Date

When troubleshooting, you may need to know a control module’s manufacture date

<table>
<thead>
<tr>
<th>Obtain the manufacture date from a...</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Module status report (modstat) | To obtain a modstat with BACview®:
1. Press Function (FN) key and hold.
2. Then press period (.)
3. Release both buttons.
The report shows the date under **Main board hardware.** |
| Sticker on the back of the main control module board
"Serial No: RMPYMxxxxN"
(Bar Coded & Typed Number) | The serial numbers are unique and contain embedded information:
“RMP” – These first three digits are unique to RTU-MP and are used as an identifier.
“YM” – These two digits identify the last digit of the year and month (in hex, A=10/Oct) of manufacture. "74" would represent a date of manufacture of "April 2007".
“xxxx” – These four digits represent the sequential number of units produced for a given product for the mentioned manufacturing time period.
“N” – This final digit represents the decade and toggles between "N" and "M" every ten years. |

Table 16 – Basic Protocol Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>No communication with 3rd party vendor</td>
<td>Incorrect settings on SW1, SW2 and SW3</td>
<td>Verify and correct switch settings. Cycle power to RTU-MP after changing switch settings.</td>
</tr>
<tr>
<td>RS485 Port has no voltage output (check with RTU-MP disconnected from RS485 communication bus)</td>
<td>Verify RTU-MP has correct power supply Possible bad driver on board. Bacnet @ 9600/19.2K – .01 to .045vdc</td>
<td>Check RS485 bus for external before reconnecting to the bus Bacnet @ 38.4K – .06 to .09vdc Voltage, shorts or grounding Bacnet @ 76.8K – .1vdc before reconnecting to the bus Modbus @ 9600 – 76.8K – .124vdc N2 @ 9600 – .124vdc Verify devices are daisy chained and repeaters and bias terminators are correctly installed</td>
</tr>
</tbody>
</table>

MaxInfo Frames: This property defines the maximum number of responses that will be sent when our controller gets the token. A valid number is any positive integer. The default is 10 and should be ideal for the majority of applications. In cases where the controller is the target of many requests, this number could be increased as high as 100 or 200.

NOTE: MS/TP networks can be comprised of both Master and Slave nodes. Valid MAC addresses for Master nodes are 0 - 127 and valid addresses for Slave nodes are 0 - 254.

NOTE: See RTU-MP 3rd Party Integration Guide (or alternatively RTU-MP Controls, Start-Up, Operation, and Troubleshooting Instructions (Form 48-50H-T-1T) Appendix) for Protocol Maps.

Table 17 – Modbus Exception Codes that May be Returned From This Controller

<table>
<thead>
<tr>
<th>CODE</th>
<th>NAME</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Illegal Function</td>
<td>The Modbus function code used in the query is not supported by the controller.</td>
</tr>
<tr>
<td>02</td>
<td>Illegal Data Address</td>
<td>The register address used in the query is not supported by the controller.</td>
</tr>
<tr>
<td>04</td>
<td>Slave Device Failure</td>
<td>The Modbus Master has attempted to write to a non-existent register or a read-only register in the controller.</td>
</tr>
</tbody>
</table>
Modbus

1. Verify that the BAS and controller are both set to speak the Modbus RTU protocol. The protocol of the controller is set via SW3 (switches 3, 4, 5, and 6). The protocol can also be verified by getting a Modstat of the controller through the BACview. Hit the “FN” key and the ‘.’ key at the same time to pull up a Modstat. Scroll to the bottom of the page and there is a section entitled “Network Communications.” The active protocol and baud rate will be shown in this section.

2. Verify that the BAS and controller are set for the same baud rate. The baud rate of the controller is set via SW3 (switches 1 and 2). The baud rate can also be verified via the BACview by obtaining a Modstat.

3. Verify that the BAS is configured to speak 2-wire EIA-485 to the controller. The BAS may have to configure jumper or DIP switches on their end.

4. Verify that the BAS and the controller have the same communication settings (8 data bits, No Parity, and 1 stop bit).

5. Verify that the controller has a unique Modbus slave address. The controller’s Modbus slave address is set by its rotary address switches.

6. Verify that the BAS is sending his requests to the proper slave address of our controller.

NOTE: See RTU-MP 3rd Party Integration Guide (or alternatively RTU-MP Controls, Start-Up, Operation, and Troubleshooting Instructions (Form 48-50H-T-1T), Appendix) for Modbus Protocol Conformance Statement.

ECONOMIZER SYSTEMS

The 50TC units may be equipped with a factory-installed or accessory (field-installed) economizer system. Two types are available: with a logic control system (Economiser IV) and without a control system (Economiser2). See Fig. 66 and Fig. 67 for component locations on each type. See Fig. 68 and Fig. 69 for economizer section wiring diagrams.

Both economizers use direct-drive damper actuators.
Fig. 68 - EconoMi$er IV Wiring

NOTES:
1. Switch on actuator must be in run position for economizer to operate.
2. PremierLink™ control requires that the standard 50HJ540569 outside-air sensor be replaced by either the CROASENR001A00 dry bulb sensor or HH57A077 enthalpy sensor.
3. 50HJ540573 actuator consists of the 50HJ540567 actuator and a harness with 500-ohm resistor.

Fig. 69 - EconoMi$er2 with 4 to 20 mA Control Wiring
Table 18 – EconoMi$er IV Input/Output Logic

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>OUTPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand Control</td>
<td>Compressor</td>
</tr>
<tr>
<td>Ventilation (DCV)</td>
<td>N Terminal</td>
</tr>
<tr>
<td>Outdoor</td>
<td>Stage 1</td>
</tr>
<tr>
<td>Return</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td>Off</td>
</tr>
<tr>
<td>Below set</td>
<td>On</td>
</tr>
<tr>
<td>(DCV LED Off)</td>
<td>Off</td>
</tr>
<tr>
<td>Above set</td>
<td>On</td>
</tr>
<tr>
<td>(DCV LED On)</td>
<td>Off</td>
</tr>
</tbody>
</table>

* For single enthalpy control, the module compares outdoor enthalpy to the ABCD setpoint.
† Power at N terminal determines Occupied/Unoccupied setting: 24 vac (Occupied), no power (Unoccupied).
** Modulation is based on the supply-air sensor signal.
*** Modulation is based on the greater of DCV and supply-air sensor signals, between minimum position and either maximum position (DCV) or fully open (supply-air signal).
†† Modulation is based on the DCV signal.
††† Modulation is based on the greater of DCV and supply-air sensor signals, between closed and either maximum position (DCV) or fully open (supply-air signal).

EconoMi$er IV

Table 18 provides a summary of EconoMi$er IV. Troubleshooting instructions are enclosed.

A functional view of the EconoMi$er is shown in Fig. 70. Typical settings, sensor ranges, and jumper positions are also shown. An EconoMi$er IV simulator program is available from Carrier to help with EconoMi$er IV training and troubleshooting.

EconoMi$er IV Standard Sensors

Outdoor Air Temperature (OAT) Sensor

The outdoor air temperature sensor (HH57AC074) is a 10 to 20 mA device used to measure the outdoor-air temperature. The outdoor-air temperature is used to determine when the EconoMi$er IV can be used for free cooling. The sensor is factory-installed on the EconoMi$er IV in the outdoor airstream. (See Fig. 71.) The operating range of temperature measurement is 40° to 100°F (4° to 38°C). (See Fig. 73.)

Fig. 70 - EconoMi$er IV Functional View
Supply Air Temperature (SAT) Sensor

The supply air temperature sensor is a 3 K thermistor located at the inlet of the indoor fan. (See Fig. 71.) This sensor is factory installed. The operating range of temperature measurement is 0° to 158°F (-18° to 70°C). See Table 6 for sensor temperature/resistance values.

The temperature sensor looks like an eyelet terminal with wires running to it. The sensor is located in the “crimp end” and is sealed from moisture.

Outdoor Air Lockout Sensor

The EconoMi$er IV is equipped with an ambient temperature lockout switch located in the outdoor airstream which is used to lock out the compressors below a 42°F (6°C) ambient temperature. (See Fig. 66.)

EconoMi$er IV Control Modes

IMPORTANT: The optional EconoMi$er2 does not include a controller. The EconoMi$er2 is operated by a 4 to 20 mA signal from an existing field-supplied controller. See Fig. 69 for wiring information.

Determine the EconoMi$er IV control mode before set up of the control. Some modes of operation may require different sensors. (See Table 18.) The EconoMi$er IV is supplied from the factory with a supply-air temperature sensor and an outdoor-air temperature sensor. This allows for operation of the EconoMi$er IV with outdoor air dry bulb changeover control. Additional accessories can be added to allow for different types of changeover control and operation of the EconoMi$er IV and unit.

Outdoor Dry Bulb Changeover

The standard controller is shipped from the factory configured for outdoor dry bulb changeover control. The outdoor air and supply air temperature sensors are included as standard. For this control mode, the outdoor temperature is compared to an adjustable setpoint selected on the control. If the outdoor-air temperature is above the setpoint, the EconoMi$er IV will adjust the outside air dampers to minimum position. If the outdoor-air temperature is below the setpoint, the position of the outside air dampers will be controlled to provided free cooling using outdoor air. When in this mode, the LED next to the free cooling setpoint potentiometer will be on. The changeover temperature setpoint is controlled by the free cooling setpoint potentiometer located on the control. (See Fig. 72.) The scale on the potentiometer is A, B, C, and D. See Fig. 73 for the corresponding temperature changeover values.

Differential Dry Bulb Control

For differential dry bulb control the standard outdoor dry bulb sensor is used in conjunction with an additional accessory dry bulb sensor (part number CRTEMPSN002A00). The accessory sensor must be mounted in the return airstream. (See Fig. 75.) Wiring is provided in the EconoMi$er IV wiring harness.
In this mode of operation, the outdoor-air temperature is compared to the return-air temperature and the lower temperature airstream is used for cooling. When using this mode of changeover control, turn the enthalpy setpoint potentiometer fully clockwise to the D setting. (See Fig. 72.)

Outdoor Enthalpy Changeover

For enthalpy control, accessory enthalpy sensor (part number HH57AC078) is required. Replace the standard outdoor dry bulb temperature sensor with the accessory enthalpy sensor in the same mounting location. (See Fig. 76.) When the outdoor air enthalpy rises above the outdoor enthalpy changeover setpoint, the outdoor-air damper moves to its minimum position. The outdoor enthalpy changeover setpoint is set with the outdoor enthalpy setpoint potentiometer on the EconoMi$er IV controller. The setpoints are A, B, C, and D. (See Fig. 76.) The factory-installed 620-ohm jumper must be in place across terminals SR and SR+ on the EconoMi$er IV controller.

Fig. 75 - Return Air Temperature or Enthalpy Sensor Mounting Location

Fig. 76 - Enthalpy Changeover Setpoints
Differential Enthalpy Control

For differential enthalpy control, the EconoMi$er IV controller uses two enthalpy sensors (HH57AC078 and CRENTDIF004A00), one in the outside air and one in the return air duct. The EconoMi$er IV controller compares the outdoor air enthalpy to the return air enthalpy to determine EconoMi$er IV use. The controller selects the lower enthalpy air (return or outdoor) for cooling. For example, when the outdoor air has a lower enthalpy than the return air, the EconoMi$er IV opens to bring in outdoor air for free cooling.

Replace the standard outside air dry bulb temperature sensor with the accessory enthalpy sensor in the same mounting location. (See Fig. 66.) Mount the return air enthalpy sensor in the return air duct. (See Fig. 75.) Wiring is provided in the EconoMi$er IV wiring harness. (See Fig. 66.) The outdoor enthalpy changeover setpoint is set with the outdoor enthalpy setpoint potentiometer on the EconoMi$er IV controller. When using this mode of changeover control, turn the enthalpy setpoint potentiometer fully clockwise to the D setting.

Indoor Air Quality (IAQ) Sensor Input

The IAQ input can be used for demand control ventilation control based on the level of CO₂ measured in the space or return air duct.

Mount the accessory IAQ sensor according to manufacturer specifications. The IAQ sensor should be wired to the AQ and AQ1 terminals of the controller. Adjust the DCV potentiometers to correspond to the DCV voltage output of the indoor air quality sensor at the user-determined setpoint. (See Fig. 78.)

Exhaust Setpoint Adjustment

The exhaust setpoint will determine when the exhaust fan runs based on damper position (if accessory power exhaust is installed). The setpoint is modified with the Exhaust Fan Setpoint (EXH SET) potentiometer. (See Fig. 72.) The setpoint represents the damper position above which the exhaust fans will be turned on. When there is a call for exhaust, the EconoMi$er IV controller provides a 45 ± 15 second delay before exhaust fan activation to allow the dampers to open. This delay allows the damper to reach the appropriate position to avoid unnecessary fan overload.

Minimum Position Control

There is a minimum damper position potentiometer on the EconoMi$er IV controller. (See Fig. 72.) The minimum damper position maintains the minimum airflow into the building during the occupied period.

When using demand ventilation, the minimum damper position represents the minimum ventilation position for VOC (volatile organic compounds) ventilation requirements. The maximum demand ventilation position is used for fully occupied ventilation.

When demand ventilation control is not being used, the minimum position potentiometer should be used to set the occupied ventilation position. The maximum demand ventilation position should be turned fully clockwise.

Adjust the minimum position potentiometer to allow the minimum amount of outdoor air, as required by local codes, to enter the building. Make minimum position adjustments with at least 10°F temperature difference between the outdoor and return-air temperatures.
To determine the minimum position setting, perform the following procedure:

1. Calculate the appropriate mixed air temperature using the following formula:

\[(\frac{TO \times OA}{100}) + (\frac{TR \times RA}{100}) = TM\]

- \(TO\) = Outdoor-Air Temperature
- \(OA\) = Percent of Outdoor Air
- \(TR\) = Return-Air Temperature
- \(RA\) = Percent of Return Air
- \(TM\) = Mixed-Air Temperature

As an example, if local codes require 10% outdoor air during occupied conditions, outdoor-air temperature is 60°F, and return-air temperature is 75°F.

\[(60 \times .10) + (75 \times .90) = 73.5°F\]

2. Disconnect the supply air sensor from terminals T and T1.

3. Ensure that the factory-installed jumper is in place across terminals P and P1. If remote damper positioning is being used, make sure that the terminals are wired according to Fig. 50 and that the minimum position potentiometer is turned fully clockwise.

5. Carefully adjust the minimum position potentiometer until the measured mixed air temperature matches the calculated value.

6. Reconnect the supply air sensor to terminals T and T1.

Remote control of the EconoMi$er IV damper is desirable when requiring additional temporary ventilation. If a field-supplied remote potentiometer (Honeywell part number S963B1128) is wired to the EconoMi$er IV controller, the minimum position of the damper can be controlled from a remote location.

To control the minimum damper position remotely, remove the factory-installed jumper on the P and P1 terminals on the EconoMi$er IV controller. Wire the field-supplied potentiometer to the P and P1 terminals on the EconoMi$er IV controller. (See Fig. 77.)

Damper Movement

Damper movement from full open to full closed (or vice versa) takes 2 1/2 minutes.

Thermostats

The EconoMi$er IV control works with conventional thermostats that have a Y1 (cool stage 1), Y2 (cool stage 2), W1 (heat stage 1), W2 (heat stage 2), and G (fan). The EconoMi$er IV control does not support space temperature sensors. Connections are made at the thermostat terminal connection board located in the main control box.

Occupancy Control

The factory default configuration for the EconoMi$er IV control is occupied mode. Occupied status is provided by installing a field-supplied timeclock function on the OCCUPANCY terminals on the LCTB (Light Commercial Terminal Board) in the unit’s main control box and cutting the “CUT FOR OCCUPANCY” jumper on the LCTB. (See Fig. 79.) When the timeclock contacts are closed, the EconoMi$er IV control will be in occupied mode. When the timeclock contacts are open (removing the 24v signal from terminal N). (See Fig. 79.) The EconoMi$er IV will be in unoccupied mode.

Demand Control Ventilation (DCV)

When using the EconoMi$er IV for demand controlled ventilation, there are some equipment selection criteria which should be considered. When selecting the heat capacity and cool capacity of the equipment, the maximum ventilation rate must be evaluated for design conditions. The maximum damper position must be calculated to provide the desired fresh air.

Typically the maximum ventilation rate will be about 5 to 10% more than the typical cfm required per person, using normal outside air design criteria.

A proportional anticipatory strategy should be taken with the following conditions: a zone with a large area, varied occupancy, and equipment that cannot exceed the required ventilation rate at design conditions. Exceeding the required ventilation rate means the equipment can condition air at a maximum ventilation rate that is greater than the required ventilation rate for maximum occupancy. A proportional-anticipatory strategy will cause the fresh air supplied to increase as the room CO2 level increases even though the CO2 setpoint has not been reached. By the time the CO2 level reaches the setpoint, the damper will be at maximum ventilation and should maintain the setpoint.

Fig. 79 - LCTB, Occupancy Terminals
In order to have the CO₂ sensor control the economizer damper in this manner, first determine the damper voltage output for minimum or base ventilation. Base ventilation is the ventilation required to remove contaminants during unoccupied periods. The following equation may be used to determine the percent of outside air entering the building for a given damper position. For best results there should be at least a 10 degree difference in outside and return-air temperatures.

$$\left(\frac{TO \times OA}{100}\right) + \left(\frac{TR \times RA}{100}\right) = TM$$

TO = Outdoor-Air Temperature
OA = Percent of Outdoor Air
TR = Return-Air Temperature
RA = Percent of Return Air
TM = Mixed-Air Temperature

Once base ventilation has been determined, set the minimum damper position potentiometer to the correct position. The same equation can be used to determine the occupied or maximum ventilation rate to the building. For example, an output of 3.6 volts to the actuator provides a base ventilation rate of 5% and an output of 6.7 volts provides the maximum ventilation rate of 20% (or base plus 15 cfm per person). Use Fig. 78 to determine the maximum setting of the CO₂ sensor. For example, an 1100 ppm setpoint relates to a 15 cfm per person design. Use the 1100 ppm curve on Fig. 78 to find the point when the CO₂ sensor output will be 6.7 volts. Line up the point on the graph with the left side of the chart to determine that the range configuration for the CO₂ sensor should be 1800 ppm. The EconoMi$er IV controller will output the 6.7 volts from the CO₂ sensor to the actuator when the CO₂ concentration in the space is at 1100 ppm. The DCV setpoint may be left at 2 volts since the CO₂ sensor voltage will be ignored by the EconoMi$er IV controller until it rises above the 3.6 volt setting of the minimum position potentiometer.

Once the fully occupied damper position has been determined, set the maximum damper demand control ventilation potentiometer to this position. Do not set to the maximum position as this can result in over-ventilation to the space and potential high humidity levels.

CO₂ Sensor Configuration

The CO₂ sensor has preset standard voltage settings that can be selected anytime after the sensor is powered up. (See Table 19.)

Use setting 1 or 2 for Carrier equipment. (See Table 19.)

1. Press Clear and Mode buttons. Hold at least 5 seconds until the sensor enters the Edit mode.
2. Press Mode twice. The STDSET Menu will appear.

The custom settings of the CO₂ sensor can be changed anytime after the sensor is energized. Follow the steps below to change the non-standard settings:

1. Press Clear and Mode buttons. Hold at least 5 seconds until the sensor enters the Edit mode.
2. Press Mode twice. The STDSET Menu will appear.
3. Use the Up/Down button to toggle through each of the nine variables, starting with Altitude, until the desired setting is reached.
4. Press Mode to move through the variables.
5. Press Enter to lock in the selection, then press Mode to continue to the next variable.

Dehumidification of Fresh Air with DCV (Demand Controlled Ventilation) Control

If normal rooftop heating and cooling operation is not adequate for the outdoor humidity level, an energy recovery unit and/or a dehumidification option should be considered.

EconoMi$er IV Preparation

This procedure is used to prepare the EconoMi$er IV for troubleshooting. No troubleshooting or testing is done by performing the following procedure.

NOTE: This procedure requires a 9-v battery, 1.2 kilo-ohm resistor, and a 5.6 kilo-ohm resistor which are not supplied with the EconoMi$er IV.

IMPORTANT: Be sure to record the positions of all potentiometers before starting troubleshooting.

Table 19 – EconoMi$er IV Sensor Usage

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>ECONOMI$ER IV WITH OUTDOOR AIR DRY BULB SENSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accessories Required</td>
</tr>
<tr>
<td>Outdoor Air Dry Bulb</td>
<td>None. The outdoor air dry bulb sensor is factory installed.</td>
</tr>
<tr>
<td>Differential Dry Bulb</td>
<td>CRTEMPSN002A00*</td>
</tr>
<tr>
<td>Single Enthalpy</td>
<td>HH57AC078</td>
</tr>
<tr>
<td>Differential Enthalpy</td>
<td>HH57AC078 and CRENTRDIF004A00*</td>
</tr>
<tr>
<td>CO₂ for DCV Control using a Wall-Mounted CO₂ Sensor</td>
<td>33ZCSENCO2</td>
</tr>
<tr>
<td>CO₂ for DCV Control using a Duct-Mounted CO₂ Sensor</td>
<td>33ZCSENCO2† and 32CASPCO2** O R CRCBDIOX005A00††</td>
</tr>
</tbody>
</table>

* CRENDTIF004A00 and CRTEMPSN002A00 accessories are used on many different base units. As such, these kits may contain parts that will not be needed for installation.
† 33ZCSENCO2 is an accessory CO₂ sensor.
** 32CASPCO2 is an accessory aspirator box required for duct-mounted applications.
†† CRCBDIOX005A00 is an accessory that contains both 33ZCSENCO2 and 32CASPCO2 accessories.

3. Use the Up/Down button to select the preset number. (See Table 18.)
4. Press Enter to lock in the selection.
5. Press Mode to exit and resume normal operation.
1. Disconnect power at TR and TR1. All LEDs should be off. Exhaust fan contacts should be open.
2. Disconnect device at P and P1.
4. Disconnect wires at T and T1. Place 5.6 kilo-ohm resistor across T and T1.
5. Jumper TR to 1.
6. Jumper TR to N.
7. If connected, remove sensor from terminals SO and +.
 Connect 1.2 kilo-ohm 4074EJM checkout resistor across terminals SO and +.
9. Set minimum position, DCV setpoint, and exhaust potentiometers fully CCW (counterclockwise).
10. Set DCV maximum position potentiometer fully CW (clockwise).
11. Set enthalpy potentiometer to D.
12. Apply power (24 vac) to terminals TR and TR1.

Differential Enthalpy

To check differential enthalpy:

1. Make sure EconoMi$er IV preparation procedure has been performed.
2. Place 620-ohm resistor across SO and +.
3. Place 1.2 kilo-ohm resistor across SR and +. The Free Cool LED should be lit.
4. Remove 620-ohm resistor across SO and +. The Free Cool LED should turn off.
5. Return EconoMi$er IV settings and wiring to normal after completing troubleshooting.

Single Enthalpy

To check single enthalpy:

1. Make sure EconoMi$er IV preparation procedure has been performed.
2. Set the enthalpy potentiometer to A (fully CCW). The Free Cool LED should be lit.
3. Set the enthalpy potentiometer to D (fully CW). The Free Cool LED should turn off.
4. Return EconoMi$er IV settings and wiring to normal after completing troubleshooting.

DCV (Demand Controlled Ventilation) and Power Exhaust

To check DCV and Power Exhaust:

1. Make sure EconoMi$er IV preparation procedure has been performed.
2. Ensure terminals AQ and AQ1 are open. The LED for both DCV and Exhaust should be off. The actuator should be fully closed.
3. Connect a 9-v battery to AQ (positive node) and AQ1 (negative node). The LED for both DCV and Exhaust should turn on. The actuator should drive to between 90 and 95% open.
4. Turn the Exhaust potentiometer CW until the Exhaust LED turns off. The LED should turn off when the potentiometer is approximately 90%. The actuator should remain in position.
5. Turn the DCV setpoint potentiometer CW until the DCV LED turns off. The DCV LED should turn off when the potentiometer is approximately 9-v. The actuator should drive fully closed.
6. Turn the DCV and Exhaust potentiometers CCW until the Exhaust LED turns on. The exhaust contacts will close 30 to 120 seconds after the Exhaust LED turns on.
7. Return EconoMi$er IV settings and wiring to normal after completing troubleshooting.

DCV Minimum and Maximum Position

To check the DCV minimum and maximum position:

1. Make sure EconoMi$er IV preparation procedure has been performed.
2. Connect a 9-v battery to AQ (positive node) and AQ1 (negative node). The DCV LED should turn on. The actuator should drive to between 20 and 80% open.
3. Turn the DCV Maximum Position potentiometer to midpoint. The actuator should drive to between 20 and 80% open.
4. Turn the DCV Maximum Position potentiometer to fully CCW. The actuator should drive fully closed.
5. Turn the Minimum Position potentiometer to midpoint. The actuator should drive to between 20 and 80% open.
6. Turn the Minimum Position Potentiometer fully CW. The actuator should drive fully open.
7. Remove the jumper from TR and N. The actuator should drive fully closed.
8. Return EconoMi$er IV settings and wiring to normal after completing troubleshooting.
Supply-Air Sensor Input

To check supply-air sensor input:

1. Make sure EconoMi$er IV preparation procedure has been performed.
2. Set the Enthalpy potentiometer to A. The Free Cool LED turns on. The actuator should drive to between 20 and 80% open.
3. Remove the 5.6 kilo-ohm resistor and jumper T to T1. The actuator should drive fully open.
4. Remove the jumper across T and T1. The actuator should drive fully closed.
5. Return EconoMi$er IV settings and wiring to normal after completing troubleshooting.

EconoMi$er IV Troubleshooting Completion

This procedure is used to return the EconoMi$er IV to operation. No troubleshooting or testing is done by performing the following procedure.

1. Disconnect power at TR and TR1.
2. Set enthalpy potentiometer to previous setting.
3. Set DCV maximum position potentiometer to previous setting.
4. Set minimum position, DCV setpoint, and exhaust potentiometers to previous settings.
5. Remove 620-ohm resistor from terminals SR and +.
6. Remove 1.2 kilo-ohm checkout resistor from terminals SO and +. If used, reconnect sensor from terminals SO and +.
7. Remove jumper from TR to N.
8. Remove jumper from TR to 1.
9. Remove 5.6 kilo-ohm resistor from T and T1. Reconnect wires at T and T1.
11. Apply power (24 vac) to terminals TR and TR1.

WIRING DIAGRAMS

See Fig. 80 and Fig. 81 for typical wiring diagrams.
Fig. 80 - 50TC Typical Unit Wiring Diagram - Power (D08, 208/230-3-60)
PRE-START-UP

⚠️ WARNING

PERSONAL INJURY HAZARD
Failure to follow this warning could result in personal injury or death.

1. Follow recognized safety practices and wear protective goggles when checking or servicing refrigerant system.
2. Do not operate compressor or provide any electric power to unit unless compressor terminal cover is in place and secured.
3. Do not remove compressor terminal cover until all electrical sources are disconnected.
4. Relieve all pressure from system before touching or disturbing anything inside terminal box if refrigerant leak is suspected around compressor terminals.
5. Never attempt to repair soldered connection while refrigerant system is under pressure.
6. Do not use torch to remove any component. System contains oil and refrigerant under pressure. To remove a component, wear protective goggles and proceed as follows:
 a. Shut off electrical power to unit.
 b. Recover refrigerant to relieve all pressure from system using both high-pressure and low pressure ports.
 c. Cut component connection tubing with tubing cutter and remove component from unit.
 d. Carefully unsweat remaining tubing stubs when necessary. Oil can ignite when exposed to torch flame.

ELECTRICAL OPERATION HAZARD
Failure to follow this warning could result in personal injury or death.

Relieve pressure and recover all refrigerant before system repair or final unit disposal. Wear safety and gloves when handling refrigerants. Keep torches and other ignition sources away from refrigerants and oils.

3. Make the following inspections:
 a. Inspect for shipping and handling damages such as broken lines, loose parts, or disconnected wires, etc.
 b. Inspect for oil at all refrigerant tubing connections and on unit base. Detecting oil generally indicates a refrigerant leak. Leak-test all refrigerant tubing connections using electronic leak detector, halide torch, or liquid-soap solution.
 c. Inspect all field-wiring and factory-wiring connections. Be sure that connections are completed and tight. Be sure that wires are not in contact with refrigerant tubing or sharp edges.
 d. Inspect coil fins. If damaged during shipping and handling, carefully straighten fins with a fin comb.

4. Verify the following conditions:
 a. Make sure that condenser-fan blade are correctly positioned in fan orifice. See Condenser-Fan Adjustment section for more details.
 b. Make sure that air filter(s) is in place.
 c. Make sure that condensate drain trap is filled with water to ensure proper drainage.
 d. Make sure that all tools and miscellaneous loose parts have been removed.

START-UP, GENERAL

Unit Preparation
Make sure that unit has been installed in accordance with installation instructions and applicable codes.

Return-Air Filters
Make sure correct filters are installed in unit (see Appendix II - Physical Data). Do not operate unit without return-air filters.

Outdoor-Air Inlet Screens
Outdoor-air inlet screen must be in place before operating unit.

Compressor Mounting
Compressors are internally spring mounted. Do not loosen or remove compressor hold down bolts.
Internal Wiring
Check all electrical connections in unit control boxes. Tighten as required.

Refrigerant Service Ports
Each unit system has two 1/4” SAE flare (with check valves) service ports: one on the suction line, and one on the compressor discharge line. Be sure that caps on the ports are tight.

Compressor Rotation
On 3-phase units with scroll compressors, it is important to be certain compressor is rotating in the proper direction. To determine whether or not compressor is rotating in the proper direction:
1. Connect service gauges to suction and discharge pressure fittings.
2. Energize the compressor.
3. The suction pressure should drop and the discharge pressure should rise, as is normal on any start-up.

If the suction pressure does not drop and the discharge pressure does not rise to normal levels:
1. Note that the evaporator fan is probably also rotating in the wrong direction.
2. Turn off power to the unit and install lockout tag.
3. Reverse any two of the unit power leads.
4. Re-energize to the compressor. Check pressures.

The suction and discharge pressure levels should now move to their normal start-up levels.

NOTE: When the compressor is rotating in the wrong direction, the unit will make an elevated level of noise and will not provide cooling.

Cooling
Set space thermostat to OFF position. To start unit, turn on main power supply. Set system selector switch at COOL position and fan switch at AUTO position. Adjust thermostat to a setting approximately 5°F (3°C) below room temperature. Both compressors start on closure of contactors.

Check unit charge. Refer to Refrigerant Charge section.
Reset thermostat at a position above room temperature. Both compressors will shut off after a 30-second delay. The supply fan and both compressors will shut off.

To shut off unit, set system selector switch at OFF position. Resetting thermostat at a position above room temperature shuts unit off temporarily until space temperature exceeds thermostat setting.

Heating
To start unit, turn on main power supply.
Set system selector switch at HEAT position and set thermostat at a setting above room temperature. Set fan at AUTO position.

First stage of thermostat energizes the first-stage electric heater elements; second stage energizes second-stage electric heater elements, if installed. Check heating effects at air supply grille(s).

If electric heaters do not energize, reset limit switch (located on evaporator-fan scroll) by pressing button located between terminals on the switch.

To Shut Off Unit
Set system selector switch at OFF position. Resetting thermostat at a position below room temperature temporarily shuts unit off until space temperature falls below thermostat setting.

Ventilation (Continuous Fan)
Set fan and system selector switches at ON and OFF positions, respectively. Evaporator fan operates continuously to provide constant air circulation.

START-UP, PREMIERLINK ™ CONTROLS

WARNING

ELECTRICAL OPERATION HAZARD
Failure to follow this warning could result in personal injury or death.

The unit must be electrically grounded in accordance with local codes and NEC ANSI/NFPA 70 (American National Standards Institute/National Fire Protection Association.)

Use the Carrier network communication software to start up and configure the PremierLink controller.

Changes can be made using the ComfortWORKS® software, ComfortVIEW™ software, Network Service Tool, System Pilot™ device, or Touch Pilot™ device. The System Pilot and Touch Pilot are portable interface devices that allow the user to change system set-up and setpoints from a zone sensor or terminal control module. During start-up, the Carrier software can also be used to verify communication with PremierLink controller.

NOTE: All set-up and setpoint configurations are factory set and field-adjustable.

For specific operating instructions, refer to the literature provided with user interface software.

Perform System Check-Out
1. Check correctness and tightness of all power and communication connections.
2. At the unit, check fan and system controls for proper operation.
3. At the unit, check electrical system and connections of any optional electric reheat coil.
4. Check to be sure the area around the unit is clear of construction dirt and debris.
5. Check that final filters are installed in the unit. Dust and debris can adversely affect system operation.
6. Verify that the PremierLink™ controls are properly connected to the CCN bus.

Initial Operation and Test

Perform the following procedure:

1. Apply 24 vac power to the control.
2. Connect the service tool to the phone jack service port of the controller.
3. Using the Service Tool, upload the controller from address 0, 31 at 9600 baud rate. The address may be set at this time. Make sure that Service Tool is connected to only one unit when changing the address.

Memory Reset

DIP switch 4 causes an E-squared memory reset to factory defaults after the switch has been moved from position 0 to position 1 and the power has been restored. To enable the feature again, the switch must be put back to the 0 position and power must be restored; this prevents subsequent resets to factory defaults if the switch is left at position 1.

To cause a reset of the non-volatile memory (to factory defaults), turn the controller power off if it is on, move the switch from position 1 to position 0, and then apply power to the controller for a minimum of 5 seconds. At this point, no action occurs, but the controller is now ready for the memory to reset. Remove power to the controller again and move the switch from position 0 to position 1. This time, when power is applied, the memory will reset to factory defaults. The controller address will return to bus 0 element 31, indicating that memory reset occurred.

Refer to Rooftop PremierLink Installation, Start-Up, and Configuration Instructions (Form 33CS-58SI) for full discussion on configuring the PremierLink control system.

START-UP, RTU-MP CONTROL

Field Service Test, explained below, will assist in proper start-up. Configuration of unit parameters, scheduling options, and operation are also discussed in this section.

Field Service Test

The Field Service Test function can be used to verify proper operation of compressors, heating stages, indoor fan, power exhaust fans, economizer, and dehumidification. Use of Field Service Test is recommended at initial system start up and during troubleshooting. See RTU-MP Controls, Start-Up, Operation, and Troubleshooting Instructions (Form 48-50H-T-2T), Appendix A for Field Service Test Mode table.

Field Service Test mode has the following changes from normal operation:

- Outdoor air temperature limits for cooling circuits, economizer, and heating are ignored.
- Normal compressor time guards and other staging delays are ignored.

- The status of Alarms (except Fire and Safety chain) is ignored but all alerts and alarms are still broadcasted on the network.

Field Service Test can be turned ON/OFF at the unit display or from the network. Once turned ON, other entries may be made with the display or through the network. To turn Field Service Test on, change the value of Test Mode to ON, to turn Field Service Test off, change the value of Test Mode to OFF.

NOTE: Service Test mode is password protected when accessing from the display. Depending on the unit model, factory-installed options, and field-installed accessories, some of the Field Service Test functions may not apply.

The independent outputs (IndpOutputs) submenu is used to change output status for the supply fan, economizer, and Power Exhaust. These independent outputs can operate simultaneously with other Field Service Test modes. All outputs return to normal operation when Field Service Test is turned off.

The Cooling submenu is used to change output status for the individual compressors and the dehumidification relay. Compressor starts are not staggered. The fans and heating service test outputs are reset to OFF for the cooling service test. Indoor fans and outdoor fans are controlled normally to maintain proper unit operation. All normal cooling alarms and alerts are functional.

NOTE: Circuit A is always operated with Circuit B due to outdoor fan control on Circuit A. Always test Circuit A first, and leave it on to test other Circuits.

The Heating submenu is used to change output status for the individual heat stages, gas or electric. The fans and cooling service test outputs are reset to OFF for the heating service test. All normal heating alarms and alerts are functional.

Configuration

The RTU-MP controller configuration points affect the unit operation and/or control. Review and understand the meaning and purpose of each configuration point before changing it from the factory default value. The submenus containing configuration points are as follows: Unit, Cooling, Heating, Inputs, Economizer, IAQ, Clock-Set, and User Password (USERPW). Each configuration point is described below under its according submenu. See RTU-MP Controls, Start-Up, Operation, and Troubleshooting Instructions (Form 48-50H-T-2T), Appendix for display tables.

Unit

Start Delay

This refers to the time delay the unit will wait after power up before it pursues any specific operation.

- Factory Default = 5 sec
- Range = 0-600 sec
Filter Service Hours
This refers to the timer set for the Dirty Filter Alarm. After the number of runtime hours set on this point is exceeded the corresponding alarm will be generated, and must be manually cleared on the alarm reset screen after the maintenance has been completed. The timer will then begin counting its runtime again for the next maintenance interval.

Factory Default = 600 hr

NOTE: Setting this configuration timer to 0, disables the alarm.

Supply Fan Service Hours
This refers to the timer set for the Supply Fan Runtime Alarm. After the number of runtime hours set on this point is exceeded the corresponding alarm will be generated, and must be manually cleared on the alarm reset screen after the maintenance has been completed. The timer will then begin counting its runtime again for the next maintenance interval.

Factory Default = 0 hr

NOTE: Setting this configuration timer to 0, disables the alarm.

Compressor1 Service Hours
This refers to the timer set for the Compressor 1 Runtime Alarm. After the number of runtime hours set on this point is exceeded the corresponding alarm will be generated, and must be manually cleared on the alarm reset screen after the maintenance has been completed. The timer will then begin counting its runtime again for the next maintenance interval.

Factory Default = 0 hr

NOTE: Setting this configuration timer to 0, disables the alarm.

Compressor2 Service Hours
This refers to the timer set for the Compressor 2 Runtime Alarm. After the number of runtime hours set on this point is exceeded the corresponding alarm will be generated, and must be manually cleared on the alarm reset screen after the maintenance has been completed. The timer will then begin counting its runtime again for the next maintenance interval.

Factory Default = 0 hr

NOTE: Setting this configuration timer to 0, disables the alarm.

Cooling
Number of Compressor Stages
This refers to the number of mechanical cooling stages available on a specific unit. Set this point to “One Stage” if there is one compressor in the specific unit, set to “Two Stage” if there are two compressors in the unit, and set to “None” if economizer cooling ONLY is desired.

Factory Default = One Stage for 1 compressor units
Two Stage for 2 compressor units

Cooling/Econ SAT Low Setpt
The supply air temperature must remain above this value to allow cooling with the economizer and/or compressors. There is 5°F plus and minus deadband to this point. If the SAT falls below this value during cooling, all compressors will be staged off. The economizer will start to ramp down to minimum position when the SAT = this configuration +5°F.

Factory Default = 50°F
Range = 45-75°F

Cooling Lockout Temp
This defines the minimum outdoor air temperature that cooling mode can be enabled and run. If the OAT falls below this threshold during cooling, then compressor cooling will not be allowed.

Factory Default = 45°F
Range = 0-65°F

Heating
Heating SAT High Setpt
The supply air temperature must remain below this value to allow heating. There is 5°F plus and minus deadband to this point. If the SAT rises above this value during heating the heat stages will begin to decrease until the SAT has dropped below this value.

Factory Default = 120°F
Range = 95-150°F

Heating Lockout Temp
This defines the maximum outdoor air temperature that heating mode can be enabled and run. If the OAT rises above this threshold during heating, then heating will not be allowed.

Factory Default = 65°F
Range = 49-95°F

Inputs
NOTE: For installation of inputs and field installed accessories, refer to the appropriate sections.

Input 3
This input is a discrete input and can be configured to be one of five different inputs: No Function, Compressor Safety, Fan Status, Filter Status, or Remote Occupancy. This input can also be configured to be either Normally Open (N/O) or Normally Closed (N/C). Input 3 is factory wired to pin J1-2. Field accessories get wired to its parallel pin J5-5. Do not connect inputs to both locations, one function per input.

Factory Default = Compressor Safety and N/O

NOTE: Compressor Safety input comes from the CLO board. J1-2 is always factory wired to TB1-8 (X) terminal on the unit. If the unit has a CLO board, do not configure input 3 for anything but Compressor Safety.
Input 5
This input is a discrete input and can be configured to be one of five different inputs: No Function, Fire Shutdown, Fan Status, Filter Status, or Remote Occupancy. This input can also be configured to be either Normally Open (N/O) or Normally Closed (N/C). Input 5 is factory wired to pin J1-10. Field accessories get wired to its parallel pin J5-3. Do not connect inputs to both locations, one function per input.

Factory Default = Fire Shutdown and N/C

NOTE: Fire Shutdown input comes from TB4-7. J1-10 is always factory wired to TB4-7. Only change input 5’s function if absolutely needed.

Input 8
This input is a discrete input and can be configured to be one of five different inputs: No Function, Enthalpy Switch, Fan Status, Filter Status, or Remote Occupancy. This input can also be configured to be either Normally Open (N/O) or Normally Closed (N/C). Input 8 is factory wired to pin J2-6. Field accessories get wired to its parallel pin J5-1. Do not connect inputs to both locations, one function per input.

Factory Default = No Function and N/O

Input 9
This input is a discrete input and can be configured to be one of five different inputs: No Function, Humidistat, Fan Status, Filter Status, or Remote Occupancy. This input can also be configured to be either Normally Open (N/O) or Normally Closed (N/C). Input 9 is factory and field wired to pin J5-7. Do not connect inputs to both locations, one function per input.

Factory Default = Humidistat and N/O

Space Sensor Type
This tells the controller what type of space sensor is installed to run the unit. The three types that can be used are the T55 space sensor, the T56 space sensor, or the RS space sensor.

Factory Default = T55 Type

Input 1 Function
This input is an analog input and can be configured to be one of five different inputs: No Sensor, IAQ Sensor, OAQ Sensor, Space RH Sensor, or Outdoor RH Sensor. Input 1 is wired to pin J4-5.

Factory Default = No Sensor

Input 2 Function
This input is an analog input and can be configured to be one of five different inputs: No Sensor, IAQ Sensor, OAQ Sensor, Space RH Sensor, or Outdoor RH Sensor. Input 2 is wired to pin J4-2.

Factory Default = No Sensor

Setpoint Slider Range
This sets the slider range of the space sensor (with this built in function). The slider is used to offset the current control setpoint.

Factory Default = 5 Δ°F
Range = 0-15 Δ°F

T55/56 Override Duration
This sets the occupancy override duration when the override button is pushed on the space sensor.

Factory Default = 1 hr
Range = 0-24 hr

IAQ Low Reference @ 4mA
This is used when an IAQ sensor is installed on Input 1 or 2. This value is displayed and used when 4mA is seen at the input.

Factory Default = 0 PPM
Range = 0-400 PPM

Factory Default = 2000 PPM
Range = 0-5000 PPM

NOTE: IAQ low Reference @ 4mA and IAQ High Reference @ 20mA are used to set the linear curve of mA vs. PPM.

OAQ Low Reference @ 4mA
This is used when an OAQ sensor is installed on Input 1 or 2. This value is displayed and used when 4mA is seen at the input.

Factory Default = 0 PPM
Range = 0-400 PPM

OAQ High Reference @ 20mA
This is used when an OAQ sensor is installed on Input 1 or 2. This value is displayed and used when 20mA is seen at the input.

Factory Default = 2000 PPM
Range = 0-5000 PPM

NOTE: OAQ low Reference @ 4mA and OAQ High Reference @ 20mA are used to set the linear curve of mA vs. PPM.

Economizer

Economizer Exists
This point tells the controller if there is an economizer installed on the unit.

Factory Default = NO if no economizer
YES if there is an economizer installed

Economizer Minimum Position
This defines the lowest economizer position when the indoor fan is running and the building is occupied.

Factory Default = 20%
Range = 0-100 %

Economizer High OAT Lockout
If the outdoor air temperature rises above this value, economizer cooling will be disabled and dampers will return and stay at minimum position.

Factory Default = 75°F
Range = 55-80°F
Power Exhaust Setpt
When the economizer damper position opens above this point the power exhaust operation will begin. When the damper position falls 10% below the setpoint, the power exhaust will shutdown.

Factory Default = 50%
Range = 20-90%

NOTE: This point is only used when Continuous Occ Exhaust = NO

Continuous Occ Exhaust
This point tells the controller when to run the power exhaust if equipped on the unit. If set to YES, the power exhaust will be on all the time when in occupied mode and will be off when in unoccupied mode. If set to NO the power exhaust will be controlled by the Power Exhaust Setpoint.

Factory Default = NO

IAQ
Max Differential CO₂ Setpt
If the difference between indoor an outdoor air quality becomes greater then this value the damper position will stay at the IAQ Greatest Min Dmpr Pos. configuration point

Factory Default = 650 PPM
Range = 300-950 PPM

IAQ Greatest Min Dmpr Pos.
This is the greatest minimum position the economizer will open to while trying to control the indoor air quality, CO₂ differential.

Factory Default = 50% open
Range = 10-60% open

Clockset
This submenu screen allows you to set the date and time manually. The Daylight Savings Time (DST) can also be changed here. The date and time is automatically set when ever software is downloaded. The clock is a 24 hour clock and not am/pm. The time should be verified (and maybe changed) according to unit location and time zone.

Factory Default = Eastern Standard Time

USERPW
This submenu screen allows you to change the user password to a four number password of choice. The User password change screen is only accessible with the Administrator Password (1111). The ADMIN password will always override the user password.

OPERATING SEQUENCE
Base Unit Controls
Cooling, Unit Without Economizer
When thermostat calls for Stage 1 cooling, terminals G and Y1 are energized. The indoor-fan contactor (IFC), outdoor fan contactor (OFC) and Compressor 1 contactor (C1) are energized and indoor-fan motor, outdoor fan and Compressor 1 start. The outdoor fan motor runs continuously while unit is in Stage 1 or Stage 2 cooling. (D08 and D12 units have two outdoor fans; both run while unit is in Stage 1 or Stage 2 cooling.)

If Stage 1 cooling does not satisfy the space load, the space temperature will rise until thermostat calls for Stage 2 cooling (Y2 closes). Compressor 2 contactor (C2) is energized; Compressor 2 starts and runs.

Heating, Unit Without Economizer
When the thermostat calls for heating, Terminal W1 will be energized with 24v. The IFC and heater contactor No. 1 (HC1) are energized. Indoor fan motor starts; electric heater module No. 1 is energized. If Stage 1 heating does not satisfy the space load, the space temperature will drop until thermostat calls for Stage 2 heating (W2 Closes). Heater contactor No. 2 (HC2) will be energized and heater module No. 2 is energized.

Cooling, Unit With EconoMi$er IV
For Occupied mode operation of EconoMi$er IV, there must be a 24-v signal at terminals TR and N (provided through PL6-3 from the unit’s IFC coil). Removing the signal at N places the EconoMi$er IV control in Unoccupied mode.

During Occupied mode operation, indoor fan operation will be accompanied by economizer dampers moving to Minimum Position setpoint for ventilation. If indoor fan is off, dampers will close. During Unoccupied mode operation, dampers will remain closed unless a Cooling (by free cooling) or DCV demand is received.

When free cooling using outside air is not available, the unit cooling sequence will be controlled directly by the space thermostat as described above as Cooling, Unit Without Economizer. Outside air damper position will be closed or Minimum Position as determined by occupancy mode and fan signal.

When free cooling is available as determined by the appropriate changeover command (dry bulb, outdoor enthalpy, differential dry bulb or differential enthalpy), a call for cooling (Y1 closes at the thermostat) will cause the economizer control to modulate the dampers open and closed to maintain the unit supply air temperature at 50 to 55°F. Compressor will not run.
During free cooling operation, a supply air temperature (SAT) above 50°F will cause the dampers to modulate between Minimum Position setpoint and 100% open. With SAT from 50°F to 45°F, the dampers will maintain at the Minimum Position setting. With SAT below 45°F, the outside air dampers will be closed. When SAT rises to 48°F, the dampers will re-open to Minimum Position setting.

Should 100% outside air not be capable of satisfying the space temperature, space temperature will rise until Y2 is closed. The economizer control will call for compressor operation. Dampers will modulate to maintain SAT at 50 to 55°F concurrent with Compressor 1 operation. The Low Ambient Lockout Thermostat will block compressor operation with economizer operation below 42°F outside air temperature.

When space temperature demand is satisfied (thermostat Y1 opens), the dampers will return to Minimum Damper position if indoor fan is running or fully closed if fan is off.

If accessory power exhaust is installed, the power exhaust fan motors will be energized by the economizer control as the dampers open above the PE-On setpoint and will be de-energized as the dampers close below the PE-On setpoint.

Damper movement from full closed to full open (or vice versa) will take between 1-1/2 and 2-1/2 minutes.

Heating With EconoMi$er IV

During Occupied mode operation, indoor fan operation will be accompanied by economizer dampers moving to Minimum Position setpoint for ventilation. If indoor fan is off, dampers will close. During Unoccupied mode operation, dampers will remain closed unless a DCV demand is received.

When the room temperature calls for heat (W1 closes), the heating controls are energized as described in Heating, Unit Without Economizer above.

Demand Controlled Ventilation

If a field-installed CO2 sensor is connected to the Economize IV control, a Demand Controlled Ventilation strategy will operate automatically. As the CO2 level in the space increases above the setpoint (on the EconoMi$er IV controller), the minimum position of the dampers will be increased proportionally, until the Maximum Ventilation setting is reached. As the space CO2 level decreases because of the increase in fresh air, the outdoor-damper will follow the higher demand condition from the DCV mode or from the free-cooling mode.

DCV operation is available in Occupied and Unoccupied periods with EconoMi$er IV. However, a control modification will be required on the 50TC unit to implement the Unoccupied period function.

PremierLink™ Control

Thermostat Mode

If the PremierLink controller is configured for Thermostat mode (TSTAT), it will control only to the thermostat inputs on J4. These inputs can be overridden through CCN communication via the CV_TSTAT points display table. When in this mode, the fire safety shutdown (FSD) input cannot be used, so any fire/life safety shutdown must be physically wired to disable the 24 vac control circuit to the unit.

Indoor Fan

The indoor fan output will be energized whenever there is 24 vac present on the G input. The indoor fan will be turned on without any delay and the economizer damper will open to its minimum position if the unit has a damper connected to the controller. This will also occur if the PremierLink controller has been configured for electric heat or heat pump operation.

Cooling

For cooling operation, there must be 24 vac present on G. When G is active, the PremierLink controller will then determine if outdoor conditions are suitable for economizer cooling when an economizer damper is available. A valid OAT, SPT (CCN space temperature) and SAT (supply air temperature) sensor MUST be installed for proper economizer operation. It is recommended that an outdoor or differential enthalpy sensor also be installed. If one is not present, then a jumper is needed on the ENTH input on J4, which will indicate that the enthalpy will always be low. Economizer operation will be based only on outdoor air dry bulb temperature. The conditions are suitable when: enthalpy is low, OAT is less than OATL High Lockout for TSTAT, and SAT is less than OATMAX - the high setpoint for free cooling. The default for OATL is 65°F. The default for OATMAX is 75°F.

When all of the above conditions are satisfied and all the required sensors are installed, the PremierLink controller will use the economizer for cooling. One of three different control routines will be used depending on the temperature of the outside air. The routines use a PID loop to control the SAT to a supply air setpoint (SASP) based on the error from setpoint (SASPSAT). The SASP is determined by the routine.

If an economizer is not available or the conditions are not met for the following economizer routines below, the compressors 1 and 2 will be cycled based on Y1 and Y2 inputs respectively.
Any time the compressors are running, the PremierLink™ controller will lock out the compressors if the SAT becomes too low. These user configurable settings are found in the SERVICE configuration table:

- Compressor 1 Lockout at SAT < SATLO1 (50 to 65°F) (default is 55°F)
- Compressor 2 Lockout at SAT < SATLO2 (45 to 55°F) (default is 50°F)

After a compressor is locked out, it may be started again after a normal time; guard period and the supply-air temperature has increased at least 8°F above the lockout setpoint.

Routine No. 1

If the SAT ≤ DXLOCK (OAT DX lockout temperature) and DX Cooling Lockout is enabled when Y1 input is energized, the economizer will be modulated to maintain SAT at the Supply Air Setpoint (SASP) = SATLO1 + 3°F (Supply Air Low Temp lockout for compressor 1). When Y2 is energized, the economizer will be modulated to control to a lower SASP = SATLO2 + 3°F (Supply Air Low Temp lockout for compressor no. 2). Mechanical cooling is locked out and will not be energized.

Routine No. 2

If DXLOCK (or DX Cooling Lockout is disabled) < OAT ≤ 68°F when Y1 input is energized, the economizer will be modulated to maintain SAT at SASP = SATLO1 + 3°F. If the SAT > SASP + 5°F and the economizer position > 85% then the economizer will close the to minimum position for three minutes or until the SAT > 68°F. The economizer integrator will then be reset and begin modulating to maintain the SASP after stage one has been energized for 90 seconds.

When Y2 is energized, the economizer will be modulated to control to a lower supply air setpoint SASP= SATLO2 + 3°F If the SAT > SASP + 5°F it will close the economizer to minimum position for 3 minutes, reset the integrator for the economizer, then start modulating the economizer to maintain the SASP after the stage two has been on for 90 seconds. This provides protection for the compressor against flooded starts and allow refrigerant flow to stabilize before modulating the economizer again. By using return air across the evaporator coil just after the compressor has started allows for increased refrigerant flow rates providing better oil return of any oil washed out during compressor start-up.

Routine No. 3

If the OAT > 68°F and the enthalpy is low and the OAT < SPT then the economizer will open to 100% and compressors 1 and 2 will be cycled based on Y1 and Y2 inputs respectively. If any of these conditions are not met the economizer will go to minimum position.

If there is no call for heating or cooling, the economizer, if available, will maintain the SASP at 70°F.

Heating

For gas or electric heat, HS1 and HS2 outputs will follow W1 and W2 inputs respectively. The fan will also be turned on if it is configured for electric heat.

Heating may also be energized when an IAQ sensor installed and has overridden the minimum economizer damper position. If the OAT < 55°F and an IAQ sensor is installed and the IAQ minimum position > minimum damper position causing the SAT to decrease below the SPT - 10°F, then the heat stages will be cycled to temper the SAT to maintain a temperature between the SPT and the SPT + 10°F.

Auxiliary Relay Configured for Exhaust Fan

If the Auxiliary Relay is configured for exhaust fan (AUXOUT = 1) in the CONFIG configuration table and Continuous Power Exhaust (MODPE) is enable in the SERVICE configuration table then the output (HS3) will be energized whenever the G input is on. If the MODPE is disabled then output will be energized based on the Power Exhaust Setpoint (PES) in the SETPOINT table.

Indoor Air Quality

If the optional indoor air quality (IAQI) sensor is installed, the PremierLink controller will maintain indoor air quality within the space at the user-configured differential setpoint (IAQD) in the CONFIG configuration table. The setpoint is the difference between the IAQI and an optional outdoor air quality sensor (OAQ). If the OAQ is not present then a fixed value of 400 ppm is used. The actual space IAQ setpoint (IAQS) is calculated as follows:

\[
IAQS = IAQD + OAQ (OAQ = 400 \text{ ppm if not present})
\]

As air quality within the space changes, the minimum position of the economizer damper will be changed also thus allowing more or less outdoor air into the space depending on the relationship of the IAQI to the IAQS. The IAQ algorithm runs every 30 seconds and calculates IAQ minimum position value using a PID loop on the IAQI deviation from the IAQS. The IAQ minimum position is then compared against the user configured minimum position (MDP) and the greatest value becomes the final minimum damper position (IQMP). If the calculated IAQ Minimum Position is greater than the IAQ maximum damper position (IAQMAXP) decision in the SERVICE configuration table, then it will be clamped to IAQMAXP value.

If IAQ is configured for low priority, the positioning of the economizer damper can be overridden by comfort requirements. If the SAT < SASP -8°F and both stages of heat are on for more then 4 minutes or the SAT > SASP + 5°F and both stages of cooling on for more then 4 minutes then the IAQ minimum damper position will become 0 and the IQMP = MDP. IAQ mode will resume when the SAT > SASP -8°F in heating or the SAT < SASP + 5°F in cooling.
If the PremierLink™ controller is configured for 1 stage of heat and cool or is only using a single stage thermostat input, this function will not work as it requires the both Y1 and Y2 or W1 and W2 inputs to be active. In this application, it is recommended that the user configure IAQ priority for high.

If IAQ is configured for high priority and the OAT < 55°F and the SAT < (SPT - 10°F), the algorithm will enable the heat stages to maintain the SAT between the SPT and the SPT + 10°F.

CCN Sensor Mode

When the PremierLink controller is configured for CCN control, it will control the compressor, economizer and heating outputs based its own space temperature input and setpoints or those received from Linkage. An optional CO2 IAQ sensor mounted in the space or received through communications can also influence the economizer and heating outputs. The PremierLink controller does not have a hardware clock so it must have another device on the CCN communication bus broadcasting time. The controller will maintain its own time once it has received time as long as it has power and will send a request for time once a minute until it receives time when it has lost power and power is restored. The controller will control to unoccupied setpoints until it has received a valid time. The controller must have valid time in order to perform any broadcast function, follow an occupancy schedule, perform IAQ pre-occupancy purge and many other functions as well. The following sections describe the operation for the functions of the PremierLink controller.

Indoor Fan

The indoor fan will be turned on whenever any one of the following conditions are met:

- If the PremierLink controller is in the occupied mode and ASHRAE 90.1 Supply Fan is configured for Yes in the CONFIG table. This will be determined by its own internal occupancy schedule if it is programmed to follow its local schedule or broadcast its local schedule as a global schedule, or following a global schedule broadcast by another device.
- If PremierLink controller is in the occupied mode and ASHRAE 90.1 Supply Fan is configured for No and there is a heat or cool demand (fan auto mode)
- If the PremierLink controller is in the occupied mode and ASHRAE 90.1 Supply Fan is configured for Yes when Linkage is active and the Linkage Coordinator device is sending an occupied mode flag
- When Temperature Compensated Start is active
- When Free Cool is active
- When Pre-Occupancy Purge is active
- Whenever there is a demand for cooling or heating in the unoccupied mode
- Whenever the Remote Contact input is configured for Remote Contact (RC_DC=1 in SERVICE table) and it is closed or the point is forced Closed via communications in the STATUS01 points display table (remote contact closed = occupied, remote contact open = unoccupied)
- Whenever the H3_EX_RV point is configured for Dehumidification (AUXOUT=5 in CONFIG table) and it is in the unoccupied mode and the indoor RH exceeds the unoccupied humidity setpoint
- Whenever the Supply Fan Relay point is forced On in the STATUS01 points display table

The fan will also continue to run as long as compressors are on when transitioning from occupied to unoccupied with the exception of Fire Shutdown mode. If the Fire Shutdown input point is closed or forced in the STATUS01 points display table, the fan will be shutdown immediately regardless of the occupancy state or demand.

The PremierLink controller has an optional Supply Fan Status input to provide proof of airflow. If this is enabled, the point will look for a contact closure whenever the Supply Fan Relay is on. If the input is not enabled, then it will always be the same state as the Supply Fan Relay. The cooling, economizer and heating routines will use this input point for fan status.

Cooling

The compressors are controlled by the Cooling Control Loop that is used to calculate the desired SAT needed to satisfy the space. It will compare the SPT to the Occupied Cool Setpoint (OCSP) + the T56 slider offset (STO) when occupied and the Unoccupied Cool Setpoint (UCSP + Unoccupied Cooling Deadband) if unoccupied to calculate a Cooling Submaster Reference (CCSR) that is then used by the staging algorithm (Cooling submaster loop) to calculate the required number of cooling stages. The economizer, if available, will be used as the first stage of cooling in addition to the compressors. This loop runs every minute. The following conditions must be met in order for this algorithm to run:

- indoor fan has been ON for at least 30 seconds
- heat mode is not active and the time guard between modes equals zero.
- mode is occupied or the Temperature Compensated Start or Cool mode is active
- SPT reading is available and > (OCSP + STO)
- If mode is unoccupied and the SPT > (UCSP + Unoccupied Cooling Deadband). The indoor fan will be turned on by the staging algorithm.
- OAT > DXLOCK or OAT DX Lockout is disabled

If all of the above conditions are met, the CCSR will be calculated, otherwise it is set to its maximum value and DX stages is set to 0. If only the last condition is not true and an economizer is available, it will be used to cool the space.
The submaster loop uses the CCSR compared to the actual SAT to determine the required number of capacity stages to satisfy the load. There is a programmable minimum internal time delay of 3 to 5 minutes on and 2 to 5 minutes off for the compressors to prevent short cycling. There is also a 3-minute time delay before bringing on the second stage compressor. If the PremierLink™ controller is configured for Heat Pump and AUXOUT is configured for Reversing Valve Cool, the H3_EX_RV output will energize 2 seconds after the first compressor is energized and stay energized until there is a demand for heat. If AUXOUT is configured for Reversing Valve Heat, then the H3_EX_RX contact will be de-energized when there is a demand for cooling. An internal 5 to 10-minute user-programmable time guard between modes prevents rapid cycling between modes when used in a single zone application. The Time Guard is lowered to 3 minutes when Linkage is active to allow the 3V™ linkage coordinator to have better control of the PremierLink controller when used as the air source for the 3V control system.

Table 20 indicates the number of stages available. The staging algorithm looks at the number of stages available based the number of cool stages configured in the SERVICE configuration table. The algorithm will skip the economizer if it is not available and turn on a compressor.

Table 20 – Available Cooling Stages

<table>
<thead>
<tr>
<th>NUMBER OF STAGES</th>
<th>0</th>
<th>1 (ECONOMIZER*)</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressor 1</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>Compressor 2</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
</tr>
</tbody>
</table>
* If conditions are suitable for economizer operation.

Any time the compressors are running, the PremierLink controller will lockout the compressors if the SAT becomes too low. These user configurable settings are found in the SERVICE configuration table:

- Compressor 1 Lockout at SAT < SATLO1 (50 to 65°F) (default is 55°F)
- Compressor 2 Lockout at SAT < SATLO2 (45 to 55°F) (default is 50°F)

After a compressor is locked out, it may be started again after a normal time-guard period and the supply air temperature has increased at least 8°F above the lockout setpoint.

Dehumidification

The PremierLink controller will provide occupied and unoccupied dehumidification control when AUXOUT = 5 in the CONFIG table and is installed on HVAC units that are equipped with additional controls and accessories to accomplish this function. This function also requires a space relative humidity sensor be installed on the OAQ/IRH input.

When in the occupied mode and the indoor relative humidity is greater then the Occupied High Humidity setpoint, then the H3_EX_RV output point will be energized. When in the unoccupied mode and indoor relative humidity is greater then the Unoccupied High Humidity setpoint, then the H3_EX_RV output point and supply fan output will be energized. There is a fixed 5% hysteresis that the indoor relative humidity must drop below the active setpoint to end the dehumidification mode and deenergize the H3_EX_RV output. If the PremierLink controller is in the unoccupied mode, then the fan relay will deenergize if there is no other mode requiring to the fan to be on. This function will not energize mechanical cooling as a result of the indoor relative humidity exceeding either setpoint.

A high humidity alarm will be generated if the indoor relative humidity exceeds the high humidity setpoint by the amount configured in the Control Humidity Hysteresis in the ALARMS table for 20 minutes. The alarm will return to normal when the indoor relative humidity drops 3% below the active humidity setpoint.

Economizer

The economizer dampers are used to provide free cooling and indoor air quality if optional CO2 sensor is installed and when the outside conditions are suitable. Temperature control is accomplished by controlling the SAT to a certain level determined by the Economizer PID Loop by calculating a submaster reference (ECONSR) value. This algorithm will calculate the submaster reference temperature (ECONSR) based on OAT and enthalpy conditions and cooling requirements. The ECONSR value is then passed to the Economizer Submaster Loop, which will modulate dampers to maintain SAT at ECONSR level.

The following conditions are required to determine if economizer cooling is possible:

- Indoor fan has been on for at least 30 seconds
- Enthalpy is low
- SAT reading is available
- OAT reading is available
- SPT reading is available
- OAT < SPT
- OAT < OATMAX (OATMAX default is 75°F)
- Economizer position is NOT forced

If any of the above conditions are not met, the ECONSR will be set to its MAX limit of 120°F and the damper will go to its configured minimum position. The minimum damper position can be overridden by the IAQ routine described later in this section.

The calculation for ECONSR is as follows:

\[
ECONSR = \text{PID function on (setpoint - SPT), where:}
\]

- Setpoint = ((OCSP+STO) + (OHSP+STO))/2 when NTLO (Unoccupied Free Cool OAT Lockout) < OAT < 68°F
- Setpoint = (OCSP+STO) - 1 when OAT ≤ NTLO
- Setpoint = (OHSP+STO) + 1 when OAT ≥ 68°F
The actual damper position (ECONPOS) is the result of
the following calculation. Values represented in the right
side of the equation can be found in the SERVICE
configuration table descriptions in this manual. Note that
the OAT is taken into consideration to avoid large
changes in damper position when the OAT is cold:

\[
ECONPOS = \text{SubGain} \times (\text{ECONSR} - \text{SAT}) + \text{CTRVAL}
\]

where \(\text{SubGain} = \frac{(\text{OAT} - \text{TEMPBAND})}{\text{ESG} + 1} \)

If the OAT < DXLOCK (DX Cool Lockout setpoint) then
the damper will be modulated to maintain the SAT at the
ECONSR value.

If the OAT is between DXLOCK and 68°F (DXLOCK <
OAT < 68°F) and additional cooling is required, the
economizer will close the to minimum position for three
minutes, the economizer integrator will then be reset to 0
and begin modulating to maintain the SASP after the stage
has been energized for about 90 seconds. This will allow
the economizer to calculate a new ECONSR that takes
into account the cooling effect that has just been turned on
and not return to the value require before the cooling was
added. This will prevent the economizer from causing
premature off cycles of compressors while maintaining the
low SAT temperature setpoint for the number of stages
active. In addition to preventing compressor short cycling,
by using return air across the evaporator coil just after the
compressor has started allows for increased refrigerant
flow rates providing for better oil return of any oil washed
out during compressor start-up.

If the OAT > 68°F and OAT < SPT and the number of DX
stages requested is > 0 by the staging algorithm, then
ECONSR is set to its minimum value 48°F and the
damper will go to 100% open.

If the Auxiliary Relay is configured for exhaust fan
(AUXOUT = 1) in the CONFIG configuration table and
Continuous Power Exhaust (MODPE) is Enable in the
SERVICE configuration table, then the AUXO output
(HS3) will be energized whenever the PremierLink
controller is in the occupied mode. If the MODPE is
disabled then AUXO output will be energized based on
the Power Exhaust Setpoint (PES) in the SETPOINT
table.

Heating

The heat stages are controlled by the Heating Control
Loop, which is used to calculate the desired SAT needed
to satisfy the space. It will compare the SPT to the
Occupied Heat Setpoint (OHSP) + the T56 slider offset
(STO) when occupied and the Unoccupied Heat Setpoint
(UHSP - Unoccupied Heating Deadband) if unoccupied to
calculate a Staged Heat Submaster Reference (SHSR).
The heat staging algorithm compares the SHSR to the
actual SAT to calculate the required number of heating
stages to satisfy the load. This loop runs every 40 seconds.
The following conditions must be met in order for this
algorithm to run:

* Indoor fan has been ON for at least 30 seconds.
* Cool mode is not active and the time guard between
 modes equals zero.

The Staged Heat Submaster Reference (SHSR) is
calculated as follows:

\[
\text{SHSR} = \text{Heating PID function on (error) where error} =
\frac{(\text{OHSP + STO}) - \text{Space Temperature}}{\text{SAT}}
\]

The Maximum SHSR is determined by the SA THI
configuration. If the supply-air temperature exceeds the
SA THI value, then the heat stages will turn off. Heat staging will resume after a delay to allow the
supply-air temperature to drop below the SA THI value.

The maximum number of stages available is dependent on
the type of heat and the number of stages programmed in
the CONFIG and SERVICE configuration tables. Staging
will occur as follows for gas electric units, Carrier heat
pumps with a defrost board, or cooling units with electric
heat:

For Heating PID STAGES = 3 and AUXOUT = Reversing
Valve Heat (the H3_EX_RV output will stay energized
until there is a cool demand) HEAT STAGES = 1 (50%
capacity) - energize HS1.

HEAT STAGES = 2 (100% capacity) - energize HS2.

For Heating PID STAGES = 3 and AUXOUT = HS3
HEAT STAGES = 1 (33% capacity if) - energize HS1
HEAT STAGES = 2 (66% capacity) - energize HS2
HEAT STAGES = 3 (100% capacity) - energize HS3

Staging will occur as follows:

For Heat pump units with AUXOUT configured as
reversing valve:

For Heating PID STAGES = 2 and AUXOUT = Reversing
Valve Heat (the H3_EX_RV output will stay energized
until there is a cool demand) HEAT STAGES = 1 (50%
capacity) shall energize CMP1, CMP2, RVS.

HEAT STAGES = 2 (100% capacity) shall energize HS1
and HS2.

Heating PID STAGES = 3 and AUXOUT = Reversing
Valve Heat (the H3_EX_RV output will stay energized
until there is a cool demand)

HEAT STAGES = 1 (33% capacity if) shall energize
CMP1, CMP2, RVS

HEAT STAGES = 2 (66% capacity) shall energize HS1
HEAT STAGES = 3 (100% capacity) shall energize HS2
If AUXOUT is configured for Reversing Valve Cool, then the H3_EX_RV contact will be deenergized when there is a demand for heating. The heat stages will be cycled to temper the SAT so that it will be between the SPT and the SPT + 10°F (SPT < SAT < (SPT + 10°F)) if:

- the number of heat stages calculated is zero
- the OAT < 55°F
- an IAQ sensor is installed
- the IAQ Minimum Damper Position > minimum damper position
- and the SAT < SPT - 10°F.

There is also a SAT tempering routine that will act as SAT low limit safety to prevent the SAT from becoming too cold should the economizer fail to close. One stage of heating will be energized if it is not in the Cooling or Free Cooling mode and the OAT is below 55°F and the SAT is below 40°F. It will deenergize when the SAT > (SPT + 10°F).

Indoor Air Quality — If the optional indoor air quality (IAQI) sensor is installed, the PremierLink controller will maintain indoor air quality within the space at the user configured differential setpoint (IAQD) in the CONFIG configuration table. The setpoint is the difference between the IAQI and an optional outdoor air quality sensor (OAQ). If the OAQ is not present then a fixed value of 400 ppm is used. The actual space IAQ setpoint (IAQS) is calculated as follows:

\[\text{IAQS} = \text{IAQD} + \text{OAQ} \ (\text{OAQ} = 400 \text{ ppm if not present}) \]

As air quality within the space changes, the minimum position of the economizer damper will be changed also thus allowing more or less outdoor air into the space depending on the relationship of the IAQI to the IAQS. The IAQ algorithm runs every 30 seconds and calculates IAQ minimum position value using a PID loop on the IAQI deviation from the IAQS. The IAQ minimum position is then compared against the user configured minimum position (MDP) and the greatest value becomes the final minimum damper position (IQMP). If the calculated IAQ minimum position is greater than the IAQ maximum damper position (IAQMAXP) decision in the SERVICE configuration table, then it will be clamped to IAQMAXP value.

If IAQ is configured for low priority, the positioning of the economizer damper can be overridden by comfort requirements. If the SPT > OCSP + 2.5 or the SPT < OHSP - 2.5 then IAQ minimum position becomes 0 and the IQMP = MDP. The IAQ mode will resume when the SPT ≤ OCSP + 1.0 and SPT ≥ OHSP - 1.0.

If IAQ is configured for high priority and the OAT < 55°F and the SAT < (SPT - 10°F), the algorithm will enable the heat stages to maintain the SAT between the SPT and the SPT + 10°F.

IAQ Pre-Occupancy Purge

This function is designed to purge the space of airborne contaminants that may have accumulated 2 hours prior to the beginning of the next occupied period. The maximum damper position that will be used is temperature compensated for cold weather conditions and can be pre-empted by Temperature Compensated Start function. For pre-occupancy to occur, the following conditions must be met:

- IAQ Pre-Occupancy Purge option is enabled in the CONFIG configuration table
- Unit is in the unoccupied state
- Current Time is valid
- Next Occupied Time is valid
- Time is within 2 hours of next Occupied period
- Time is within Purge Duration (user-defined 5 to 60 minutes in the CONFIG configuration table)
- OAT Reading is available

If all of the above conditions are met, the economizer damper IQMP is temporarily overridden by the pre-occupancy damper position (PURGEMP). The PURGEMP will be set to one of the following conditions based on atmospheric conditions and the space temperature:

- If the OAT ≥ NTLO (Unoccupied OAT Lockout Temperature) and OAT < 65°F and OAT is less than or equal to OCSP and Enthalpy = Low then PURGEMP = 100%.
- If the OAT < NTLO then PURGEMP = LTMP (Low Temperature Minimum Position - defaults to 10%)
- If the OAT > 65°F or (OAT ≥ NTLO and OAT > OCSP) or Enthalpy = High then PURGEMP = HTMP (High Temperature Minimum Position defaults to 35%).

The LTMP and HTMP are user adjustable values from 0 to 100% in the SETPOINT table. Whenever PURGEMP results in a number greater than 0%, the IAQ pre-occupancy purge mode will be enabled turning on the Indoor Fan Relay and setting the economizer IQMP to the PURGEMP value. When IAQ pre-occupancy mode is not active PURGEMP = 0%.

Unoccupied Free Cooling

Unoccupied free cool function will start the indoor fan during unoccupied times in order to cool the space with outside air. This function is performed to delay the need for mechanical cooling when the system enters the occupied period. Depending on how Unoccupied Free Cooling is configured, unoccupied mode can occur at any time in the unoccupied time period or 2 to 6 hours prior to the next occupied time. Once the space has been sufficiently cooled during this cycle, the fan will be stopped. In order to perform unoccupied free cooling all of the following conditions must be met:

- NTEN option is enabled in the CONFIG configuration table
- Unit is in unoccupied state
- Current time of day is valid
• Temperature Compensated Start mode is not active
• COOL mode is not active
• HEAT mode is not active
• SPT reading is available
• OAT reading is available
• Enthalpy is low
• OAT > NTLO (with 1 °F hysteresis) and < Max Free Cool setpoint

If any of the above conditions are not met, Unoccupied Free Cool mode will be stopped, otherwise, the mode will be controlled as follows:

The NTFC setpoint (NTSP) is determined as NTSP = (OCSP + OHSP) / 2

The Unoccupied Free Cool mode will be started when:
SPT > (NTSP + 2 °F) and SPT > (OAT + 8 °F)
The Unoccupied Free Cool mode will be stopped when:
SPT < NTSP or SPT < (OAT + 3 °F)

Temperature Compensated Start

This function will run when the controller is in unoccupied state and will calculate early start bias time (SBT) based on space temperature deviation from occupied setpoints in minutes per degree. The following conditions will be met for the function to run:

• Unit is in unoccupied state
• Next occupied time is valid
• Current time of day is valid
• Valid space temperature reading is available (from sensor or linkage thermostat)
• Cool Start Bias (KCOOL) and Heat Bias Start (KHEAT) > 0 in the CONFIG configuration table

The SBT is calculated by one of the following formulas depending on temperature demand:

If SPT > OCSP then SBT = (SPT - OCSP) * KCOOL
If SPT < OHSP then SPT = (OHSP - SPT) * KHEAT.

The calculated start bias time can range from 0 to 255 minutes. When SBT is greater than 0 the function will subtract the SBT from the next occupied time to calculate a new start time. When a new start time is reached, the Temperature Compensated Start mode is started. This mode energizes the fan and the unit will operate as though it is in occupied state. Once set, Temperature Compensated Start mode will stay on until the unit returns to occupied state. If either Unoccupied Free Cool or IAQ Pre-Occupancy mode is active when Temperature Compensated Start begins, their mode will end.

Door Switch

The Door Switch function is designed to disable mechanical heating and cooling outputs when the REMOCC contact input is closed (in the ON state) after a programmed time delay. The fan will continue to operate based on the current mode and the ASHRAE 90.1 Supply Fan setting. The delay is programmable from 2 to 20 minutes by setting the Remote Cont/Door Switch decision in the SERVICE table to a value equal to the number of minutes desired. When the contact is open (in the OFF state), the PremierLink controller will resume normal temperature control.

This application is designed for use in schools or other public places where a door switch can be installed to monitor the opening of a door for an extended period of time. The controller will disable mechanical cooling and heating when the door is open for a programmed amount of time.

This function can also be used to monitor a high condensate level switch when installed on a water source heat pump to disable mechanic cooling in case of a plugged evaporator condensate pan drain.

Linkage

The Linkage function in the PremierLink controller is available for applications using a Linkage thermostat or the 3V control system. If using the Linkage thermostat, both the PremierLink controller and the stat must be on the same CCN bus. When used as the air source for a 3V control system, the PremierLink controller is not required to be on the same CCN bus but it is recommended. Linkage will be active when it is initiated from the Linkage thermostat or the 3V Linkage Coordinator through CCN communications and requires no configuration. Only one device can be linked to the PremierLink controller.

Once Linkage is active, the PremierLink controller’s own SPT, temperature setpoints, and occupancy are ignored and the controller will use the information provided by the remote linkage device. The following information will be received from the remote linked device and can be viewed in the maintenance display table:

• Supervisory Element
• Supervisory Bus
• Supervisory Block
• Average Occupied Heat Setpoint
• Average Occupied Cool Setpoint
• Average Unoccupied Heat Setpoint
• Average Unoccupied Cool Setpoint
• Average Zone Temp
• Average Occupied Zone Temp
• Occupancy Status
In return, the PremierLink™ controller will provide its SAT and operating mode to the linked device. It will convert its operating modes to Linkage modes. (See Table 21.)

Table 21 – Linkage Modes

<table>
<thead>
<tr>
<th>ROOFTOP MODE</th>
<th>VALUE</th>
<th>LINKAGE MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand Limit</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Heat</td>
<td>3</td>
<td>Heating</td>
</tr>
<tr>
<td>Cool or Free Cooling</td>
<td>4</td>
<td>Cooling</td>
</tr>
<tr>
<td>IAQ Control</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Temp. Compensated Start Heat</td>
<td>2</td>
<td>Warm-up</td>
</tr>
<tr>
<td>Temp. Compensated Start Cool</td>
<td>4</td>
<td>Cooling</td>
</tr>
<tr>
<td>IAQ Purge</td>
<td>6</td>
<td>Pressurization</td>
</tr>
<tr>
<td>Occupied (Indoor Fan ON)</td>
<td>4</td>
<td>Cooling</td>
</tr>
<tr>
<td>Unoccupied Free Cool</td>
<td>5</td>
<td>Unoccupied Free Cooling</td>
</tr>
<tr>
<td>Fire Shutdown</td>
<td>7</td>
<td>Evac</td>
</tr>
<tr>
<td>Factory/Field Test</td>
<td>1</td>
<td>Off</td>
</tr>
</tbody>
</table>

The PremierLink controller will generate a Linkage Communication Failure alarm if a failure occurs for 5 consecutive minutes once a Linkage has previously been established. It will then revert back to its own SPT, setpoints and occupancy schedule for control. For this reason, Carrier strongly recommends that an SPT be installed in the space on open plenum systems or in the return air duct of ducted return air systems to provide continued backup operation. When Linkage communication is restored, the controller will generate a return to normal.

For more information on how the PremierLink controller is used in conjunction with the Carrier 3V control system, contact your CCN controls representative.

IMPORTANT: The PremierLink controller should not be used as a linked air source in a ComfortID™ VAV system. The ComfortID VAV system will NOT function correctly when applied with a PremierLink controller as the air source, resulting in poor comfort control and possible equipment malfunction.

NOTE: The PremierLink controller can be used as an air source in a 3V Pressure Independent (PI) System (a 3V Linkage Coordinator with ComfortID PI Zone Controllers), but it should not be used as an air source with ComfortID controllers unless a 3V zone controller is used as the Linkage Coordinator. Contact your Carrier CCN controls representative for assistance.

Demand Limit

If the demand limit option is enabled, the control will receive and accept Redline Alert and Loadshed commands from the CCN loadshed controller. When a redline alert is received, the control will set the maximum stage of capacity equal to the stage of capacity that the unit is operating at when the redline alert was initiated.

When loadshed command is received the control will reduce capacity as shown in Table 22.

Table 22 – Loadshed Command — Gas and Electric Heat Units

<table>
<thead>
<tr>
<th>CURRENT CAPACITY</th>
<th>NEW CAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMP1</td>
<td>DX Cooling OFF</td>
</tr>
<tr>
<td>CMP1+CMP2</td>
<td>CMP1</td>
</tr>
<tr>
<td>HS1</td>
<td>Heat OFF</td>
</tr>
<tr>
<td>HS1+HS2 (+HS3)</td>
<td>HS1</td>
</tr>
</tbody>
</table>

The controller will have a maximum demand limit timer of 1 hour that prevents the unit from staying in load shed or redline alert longer than 1 hour in the event the controller loses communication with the network load shed module. Should the maximum demand limit timer expire prior to receiving the loadshed device command from CCN, the control will stop demand limit mode and return to normal operation.

RTU-MP Sequence of Operation

The RTU-MP will control the compressor, economizer and heating outputs based on its own space temperature input and setpoints. An optional CO2 IAQ sensor mounted in the space can influence the economizer minimum position. The RTU-MP has its own hardware clock that is set automatically when the software is installed on the board. The RTU-MP’s default is to control to occupied setpoints all the time, until a type of occupancy control is set. Occupancy types are described in the scheduling section. The following sections describe the operation for the functions of the RTU-MP. All point objects that are referred to in this sequence will be in reference to the objects as viewed in BACview® Handheld.

Scheduling

Scheduling is used to start heating or cooling (become occupied) based upon a day of week and a time period and control to the occupied heating or cooling setpoints. Scheduling functions are located under occupancy determination and the schedule menu accessed by the Menu softkey (see Appendix - for menu structure). Your local time and date should be set for these functions to operate properly. Five scheduling functions are available by changing the Occupancy Source to one of the following selections:

Always Occupied (Default Occupancy)

The unit will run continuously. RTU-MP ships from the factory with this setting.

Local Schedule

The unit will operate according to the schedule configured and stored in the unit. The local schedule is made up of three hierarchy levels that consist of two Override schedules, twelve Holiday and four Daily schedules, and are only accessible by the BACview screen (handheld or virtual).
The Daily schedule is the lowest schedule in the hierarchy and is overridden by both the Holiday and Override schedule. It consists of a start time, a stop time (both in 24 hour mode) and the seven days of the week, starting with Monday and ending in Sunday. To select a daily schedule, scroll to the Schedules menu off of the Menu selection. Enter the User password and change the Occupancy Source to Local Schedule. Scroll down and over to the Daily menu and press enter. Choose one of the four Daily schedules by pressing the Next softkey and change the Use point from NO to YES by selecting the point and pressing the INCR or DECR softkey. Press the OK softkey and scroll to the start and stop times. Edit these times following the same steps as the Use point. Finally scroll down to the Days: section and highlight the days required for the Daily schedule by INCR or DECR softkeys and press OK softkey.

The Holiday schedule is created to override the Daily schedule and identify a specific day and month of the year to start and stop the unit and change control to the unoccupied heating and cooling setpoints. Follow the same steps to turn on one of the twelve Holiday schedules and start and stop times. Next, select one out of the twelve months and one out of the thirty-one days of that month. The RTU-MP will now ignore the Daily schedule for the specific day and time you selected and follow the Holiday Schedule for this period.

The Override schedules primary purpose is to provide a temporary change in the occupied heating and cooling setpoints and force the unit to control to the unoccupied heating and cooling setpoints. This would occur on a set day in a particular month and last during the start and stop time configured. The Override schedule is enabled by following the same steps to create the Holiday schedule.

NOTE: Push button override is only available when running a local or BACnet Schedule.

BACnet Schedule

For use with a Building Automation System that supports native BACnet scheduling is scheduling the unit. With the Occupancy Source set to BACnet schedule the BAS will control the unit through network communication and it’s own scheduling function.

BAS On/Off

The Building Automation System is scheduling the unit via an On/Off command to the BAS ON/OFF software point. The Building Automation System can be speaking BACnet, Modbus, or N2 and is writing to the BAS On/Off point in the open protocol point map.

NOTE: If the BAS supports NATIVE BACnet scheduling, then set the Occupancy Source to BACnet schedule. If the BAS is BACnet but does NOT support NATIVE BACnet scheduling, then set the Occupancy Source to BAS On/Off.

DI On/Off

A hard-wired input on the RTU-MP will command the unit to start/stop. Inputs 3, 5, 8, and 9 on plug J5 can be hard-wired to command the unit to start/stop.

NOTE: Scheduling can either be controlled via the unit or the BAS, but NOT both.

Indoor Fan

The indoor fan will be turned on whenever any one of the following conditions is true:

- It is in the occupied mode. This will be determined by its own internal occupancy schedule.
- Whenever there is a demand for cooling or heating in the unoccupied mode.
- Whenever the remote occupancy switch is closed during DI On/Off schedule type or if occupancy is forced occupied by the BAS during BAS On/Off schedule type.

When transitioning from unoccupied to occupied, there will be a configured time delay of 5 to 600 seconds before starting the fan. The fan will continue to run as long as compressors, heating stages, or the dehumidification relays are on when transitioning from occupied to unoccupied with the exception of Shutdown mode. If Fire Shutdown, safety chain, SAT alarm or SPT alarm are active; the fan will be shutdown immediately regardless of the occupancy state or demand.

The RTU-MP has an optional Supply Fan Status input to provide proof of airflow. If this is enabled, the point will look for a contact closure whenever the Supply Fan Relay is on. If it is not enabled then it will always be the same state as the Supply Fan Relay. The cooling, economizer, heating, dehumidification, CO₂ and power exhaust routines will use this input point for fan status.

Cooling

The compressor outputs are controlled by the Cooling Control PID Loop and Cooling Stages Capacity algorithm. They will be used to calculate the desired number of stages needed to satisfy the space by comparing the Space Temperature (SPT) to the Occupied Cool Setpoint plus the T56 slider offset when occupied and the Unoccupied Cool Setpoint (UCSP) plus the T56 slider offset, if unoccupied. The economizer, if available, will be used for cooling in addition to the compressors. The following conditions must be true in order for this algorithm to run:

- Indoor Fan has been ON for at least 30 seconds.
- Heat mode is not active and the time guard between modes equals zero.
- If occupied and the SPT > (occupied cool setpoint plus the T56 slider offset).
- Space Temperature reading is available.
- If it is unoccupied and the SPT > (unoccupied cool setpoint plus the T56 slider offset). The indoor fan will be turned on by the staging algorithm.
- If economizer is available and active and economizer open > 85% and SAT > (SAT low limit + 5°F) and SPT > effective setpoint + 0.5°F.

OR

Economizer is available, but not active

OR

Economizer is not available

- OAT > DX Lockout temperature.

If all of the above conditions are met, the compressors will be energized as required, otherwise they will be de-energized.
There is a fixed 3-minute minimum on time and a 5-minute off time for each compressor output and a 3-minute minimum time delay between staging up or down.

Any time the compressors are running the RTU-MP will stage down the compressors if the SAT becomes less than the cooling low supply air setpoint.

After a compressor is staged off, it may be started again after a normal time-guard period and the supply air temperature has increased above the low supply air setpoint.

Economizer

The Economizer dampers are used to provide free cooling and Indoor Air Quality, if optional CO2 sensor is installed, when the outside conditions are suitable.

The following conditions must be true for economizer operation:
- Indoor Fan has been on for at least 30 seconds.
- Enthalpy is Low if the Enthalpy input is enabled.
- SAT reading is available.
- OAT reading is available.
- SPT reading is available.
- OAT <= High OAT economizer lockout configuration (default = 75).
- OAT <= SPT

If any of the mentioned conditions are not true, the economizer will be set to its configured minimum position. The minimum damper position can be overridden by the IAQ routine described later in this section.

If the above conditions are true, the Economizer Control Master Loop will calculate a damper position value based on the following calculation:

\[
\text{Damper Position} = \text{minimum position} + \text{PID (SPT - econ setpoint)}.
\]

Econ setpoint is half way between the effective cool and heat setpoints. If the SAT drops below the cooling low supply air setpoint (+ 5°F), the economizer will ramp down to minimum position.

Power Exhaust

If RTU-MP is also controlling an exhaust fan, it can be enabled based on damper position or by occupancy. If configured for continuous occupied operation, it will be energized whenever the controller is in the occupied mode and disabled when in the unoccupied mode. If configured for damper position control, it will be energized whenever the economizer exceeds the power exhaust setpoint and disabled when the economizer drops below the setpoint by a fixed hysteresis of 10%.

Heating

The heating outputs are controlled by the Heating Control PID Loop and Heating Stages Capacity algorithm. They will be used to calculate the desired number of stages needed to satisfy the space by comparing the SPT to the Occupied Heat Setpoint plus the T56 slider offset when occupied and the Unoccupied Heat Setpoint plus the T56 slider offset if unoccupied. The following conditions must be true in order for this algorithm to run:
- Indoor Fan has been ON for at least 30 seconds.
- Cool mode is not active and the time guard between modes equals zero.
- If occupied and SPT < (occupied heat setpoint plus T56 slider offset)
- SPT reading is available
- If it is unoccupied and the SPT < (unoccupied heat setpoint plus T56 slider offset). The indoor fan will be turned on by the staging algorithm.
- OAT < High OAT lockout temperature.

If all of the above conditions are met, the heating outputs will be energized as required, otherwise they will be de-energized. If the SAT begins to exceed the high supply air setpoint, a ramping function will cause the Heat Stages Capacity algorithm to decrease the number of stages until the SAT has dropped below the setpoint.

There is a fixed one minute minimum on time and a one minute off time for each heat output. Heat staging has a 3 minute stage up and 30 second stage down delay.

Indoor Air Quality

If the optional indoor air quality sensor is installed, the RTU-MP will maintain indoor air quality within the space at the user configured differential setpoint. The setpoint is the difference between the indoor air quality and an optional outdoor air quality sensor. If the outdoor air quality is not present then a fixed value of 400ppm is used. The following conditions must be true in order for this algorithm to run:
- The mode is occupied.
- Indoor Fan has been ON for at least 30 seconds.
- Indoor Air Quality sensor has a valid reading

As air quality within the space changes, the minimum position of the economizer damper will be changed thus allowing more or less outdoor air into the space depending on the relationship of the indoor air quality to the differential setpoint. If all the above conditions are true, the IAQ algorithm will run and calculates an IAQ minimum position value using a PID loop. The IAQ minimum damper position is then compared against the user configured economizer minimum position and the greatest value becomes the final minimum damper position of the economizer output.

If the calculated IAQ minimum position is greater than the IAQ maximum damper position configuration then it will be clamped to the configured value.
Demand Limit

If the RTU-MP receives a level 1 (one degree offset), 2 (two degree offset), or a 3 (4 degree offset) to the BACnet demand limit variable, the controller will expand the heating and cooling setpoints by the configured demand limit setpoint value and remain in effect until the BACnet demand limit variable receives a 0 value.

Table 23 – Torque Values

<table>
<thead>
<tr>
<th>Component</th>
<th>Torque Values (in–lbs)</th>
<th>Torque Values (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply fan motor mounting</td>
<td>120 ± 12 in–lbs</td>
<td>13.5 ± 1.4 Nm</td>
</tr>
<tr>
<td>Supply fan motor adjustment plate</td>
<td>120 ± 12 in–lbs</td>
<td>13.5 ± 1.4 Nm</td>
</tr>
<tr>
<td>Motor pulley setscrew</td>
<td>72 ± 5 in–lbs</td>
<td>8.1 ± 0.6 Nm</td>
</tr>
<tr>
<td>Fan pulley setscrew</td>
<td>72 ± 5 in–lbs</td>
<td>8.1 ± 0.6 Nm</td>
</tr>
<tr>
<td>Blower wheel hub setscrew</td>
<td>72 ± 5 in–lbs</td>
<td>8.1 ± 0.6 Nm</td>
</tr>
<tr>
<td>Bearing locking collar setscrew</td>
<td>65 to 70 in–lbs</td>
<td>7.3 to 7.9 Nm</td>
</tr>
<tr>
<td>Compressor mounting bolts</td>
<td>65 to 75 in–lbs</td>
<td>7.3 to 7.9 Nm</td>
</tr>
<tr>
<td>Condenser fan motor mounting bolts</td>
<td>20 ± 2 in–lbs</td>
<td>2.3 ± 0.2 Nm</td>
</tr>
<tr>
<td>Condenser fan hub setscrew</td>
<td>84 ± 12 in–lbs</td>
<td>9.5 ± 1.4 Nm</td>
</tr>
</tbody>
</table>
APPENDIX I. MODEL NUMBER SIGNIFICANCE

Model Number Nomenclature

<table>
<thead>
<tr>
<th>Position</th>
<th>Designates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–2</td>
<td>Week of manufacture (fiscal calendar)</td>
</tr>
<tr>
<td>3–4</td>
<td>Year of manufacture (“09” = 2009)</td>
</tr>
<tr>
<td>5</td>
<td>Manufacturing location (G = ETP, Texas, USA)</td>
</tr>
<tr>
<td>6–10</td>
<td>Sequential number</td>
</tr>
</tbody>
</table>

Unit Heat Type

- 50 = Cooling/Elec Heat RTU

Tier / Model

- TC = Entry tier (with Puron® refrigerant)

Heat Size

- = No heat

Refrig. System Options

- D = 2-stg. cooling compressor w/NOVATION™ coil

Cooling Tons

- 08 = 7.5 Ton
- 12 = 10 Ton
- 14 = 12.5 Ton

Sensor Options

- A = None
- B = RA smoke detector
- C = SA smoke detector
- D = RA & SA smoke detector
- E = CO₂ sensor
- F = RA smoke detector & CO₂
- G = SA smoke detector & CO₂
- H = RA & SA smoke detector & CO₂

Indoor Fan Options

- 1 = Standard static option
- 2 = Medium static option
- 3 = High static option

Service Options

- 0 = None
- 1 = Unpowered convenience outlet
- 2 = Powered convenience outlet

Intake / Exhaust Options

- A = None
- B = Temp econo w/ baro relief
- F = Enthalpy econo w/ baro relief
- K = 2 position damper

Base Unit Controls

- 0 = Electromechanical
- 1 = PremierLink DDC controller
- 2 = Open protocol DDC controller

Design Rev

- Factory assigned

Voltage

- 1 = 575/3/60
- 5 = 208-230/3/60
- 6 = 460/3/60

2-Stage Cooling Coil Options (Outdoor - Indoor)

- G = Al/Al - Al/Cu
- T = Al/Al - Al/Cu - Louvered Hail Guards
Physical Data (Cooling)

Refrigeration System

<table>
<thead>
<tr>
<th></th>
<th>50TC*D08</th>
<th>50TC*D12</th>
<th>50TC*D14</th>
</tr>
</thead>
<tbody>
<tr>
<td># Circuits / # Comp. / Type</td>
<td>2 / 2 / Scroll</td>
<td>2 / 2 / Scroll</td>
<td>2 / 2 / Scroll</td>
</tr>
<tr>
<td>Puron® (R-410a) charge A/B (lbs)</td>
<td>4 – 6 / 4 – 6</td>
<td>6 – 0 / 6 – 0</td>
<td>7 – 6/8 – 0</td>
</tr>
<tr>
<td>Oil A/B (oz)</td>
<td>42 / 42</td>
<td>42 / 42</td>
<td>56 / 56</td>
</tr>
<tr>
<td>Metering Device</td>
<td>Accutrol</td>
<td>Accutrol</td>
<td>Accutrol</td>
</tr>
<tr>
<td>High – press. Trip / Reset (psig)</td>
<td>630 / 505</td>
<td>630 / 505</td>
<td>630 / 505</td>
</tr>
<tr>
<td>Low – press. Trip / Reset (psig)</td>
<td>54 / 117</td>
<td>54 / 117</td>
<td>54 / 117</td>
</tr>
</tbody>
</table>

Evaporator Coil

<table>
<thead>
<tr>
<th></th>
<th>Cu / Al</th>
<th>Cu / Al</th>
<th>Cu / Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Cu / Al</td>
<td>Cu / Al</td>
<td>Cu / Al</td>
</tr>
<tr>
<td>Coil type</td>
<td>3/8" RTPF</td>
<td>3/8" RTPF</td>
<td>3/8" RTPF</td>
</tr>
<tr>
<td>Rows / FPI</td>
<td>3 / 15</td>
<td>4 / 15</td>
<td>4 / 15</td>
</tr>
<tr>
<td>Total Face Area (ft²)</td>
<td>8.9</td>
<td>11.1</td>
<td>11.1</td>
</tr>
<tr>
<td>Condensate Drain Conn. Size</td>
<td>3/4"</td>
<td>3/4"</td>
<td>3/4"</td>
</tr>
</tbody>
</table>

Evaporator Fan and Motor

<table>
<thead>
<tr>
<th></th>
<th>1 / Belt</th>
<th>1 / Belt</th>
<th>1 / Belt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Qty / Drive Type</td>
<td>1 / Belt</td>
<td>1 / Belt</td>
<td>1 / Belt</td>
</tr>
<tr>
<td>Max BHP</td>
<td>1.7</td>
<td>2.4</td>
<td>2.9*</td>
</tr>
<tr>
<td>Motor Frame Size</td>
<td>56</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>Fan Qty / Type</td>
<td>1 / Centrifugal</td>
<td>1 / Centrifugal</td>
<td>1 / Centrifugal</td>
</tr>
<tr>
<td>Motor Frame Size</td>
<td>56</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>Fan Diameter (in)</td>
<td>15 x 15</td>
<td>15 x 15</td>
<td>15 x 15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1 / Belt</th>
<th>1 / Belt</th>
<th>1 / Belt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Qty / Drive Type</td>
<td>1 / Belt</td>
<td>1 / Belt</td>
<td>1 / Belt</td>
</tr>
<tr>
<td>Max BHP</td>
<td>2.9</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>RPM Range</td>
<td>733–949</td>
<td>838–1084</td>
<td>838–1084</td>
</tr>
<tr>
<td>Motor Frame Size</td>
<td>56</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>Fan Qty / Type</td>
<td>1 / Centrifugal</td>
<td>1 / Centrifugal</td>
<td>1 / Centrifugal</td>
</tr>
<tr>
<td>Motor Frame Size</td>
<td>145TY</td>
<td>145TY</td>
<td>145TY</td>
</tr>
<tr>
<td>Fan Diameter (in)</td>
<td>15 x 15</td>
<td>15 x 15</td>
<td>15 x 15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1 / Belt</th>
<th>1 / Belt</th>
<th>1 / Belt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Qty / Drive Type</td>
<td>1 / Belt</td>
<td>1 / Belt</td>
<td>1 / Belt</td>
</tr>
<tr>
<td>Max BHP</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>RPM Range</td>
<td>909–1102</td>
<td>1022–1240</td>
<td>1022–1240</td>
</tr>
<tr>
<td>Motor Frame Size</td>
<td>145TY</td>
<td>145TY</td>
<td>145TY</td>
</tr>
<tr>
<td>Fan Qty / Type</td>
<td>1 / Centrifugal</td>
<td>1 / Centrifugal</td>
<td>1 / Centrifugal</td>
</tr>
<tr>
<td>Motor Diameter (in)</td>
<td>15 x 15</td>
<td>15 x 15</td>
<td>15 x 15</td>
</tr>
</tbody>
</table>

Condenser Coil

<table>
<thead>
<tr>
<th></th>
<th>Al / Al</th>
<th>Al / Al</th>
<th>Al / Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Al / Al</td>
<td>Al / Al</td>
<td>Al / Al</td>
</tr>
<tr>
<td>Coil type</td>
<td>NOVATION™</td>
<td>NOVATION™</td>
<td>NOVATION™</td>
</tr>
<tr>
<td>Rows / FPI</td>
<td>1 / 20</td>
<td>1 / 20</td>
<td>2 / 20</td>
</tr>
<tr>
<td>Total Face Area (ft²)</td>
<td>20.5</td>
<td>25.1</td>
<td>25.1</td>
</tr>
</tbody>
</table>

Condenser Fan / Motor

<table>
<thead>
<tr>
<th></th>
<th>2 / Direct</th>
<th>2 / Direct</th>
<th>1 / Direct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qty / Motor Drive Type</td>
<td>2 / Direct</td>
<td>2 / Direct</td>
<td>1 / Direct</td>
</tr>
<tr>
<td>Motor HP / RPM</td>
<td>1 / 4 / 1100</td>
<td>1 / 4 / 1100</td>
<td>1 / 1175</td>
</tr>
<tr>
<td>Fan Diameter (in)</td>
<td>22</td>
<td>22</td>
<td>30</td>
</tr>
</tbody>
</table>

Filters

<table>
<thead>
<tr>
<th></th>
<th>4 / 16 x 20 x 2</th>
<th>4 / 20 x 20 x 2</th>
<th>4 / 20 x 20 x 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA Filter # / Size (in)</td>
<td>4 / 16 x 20 x 2</td>
<td>4 / 20 x 20 x 2</td>
<td>4 / 20 x 20 x 2</td>
</tr>
</tbody>
</table>

Al / Al: Aluminum Tube / Aluminum Fin
Cu / Al: Copper Tube / Aluminum Fin
RTPF: Round Tube / Plate Fin

APPENDIX II. PHYSICAL DATA

7.5 - 12.5TONS
General Fan Performance Notes:

1. Interpolation is permissible. Do not extrapolate.
2. External static pressure is the static pressure difference between the return duct and the supply duct plus the static pressure caused by any FIOPs or accessories.
3. Tabular data accounts for pressure loss due to clean filters, unit casing, and wet coils. Factory options and accessories may add static pressure losses.
4. The Fan Performance tables offer motor/drive recommendations. In cases when two motor/drive combinations would work, Carrier recommended the lower horsepower option.
5. For information on the electrical properties of Carrier’s motors, please see the Electrical information section of this book.
APPENDIX III. FAN PERFORMANCE (cont.)

50TC*D08 3 PHASE 7.5 TON HORIZONTAL SUPPLY

<table>
<thead>
<tr>
<th>CFM</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RPM</td>
<td>BHP</td>
<td>RPM</td>
<td>BHP</td>
</tr>
<tr>
<td>2250</td>
<td>465</td>
<td>0.43</td>
<td>555</td>
<td>0.64</td>
</tr>
<tr>
<td>2438</td>
<td>488</td>
<td>0.51</td>
<td>575</td>
<td>0.73</td>
</tr>
<tr>
<td>2625</td>
<td>510</td>
<td>0.60</td>
<td>595</td>
<td>0.84</td>
</tr>
<tr>
<td>2813</td>
<td>533</td>
<td>0.70</td>
<td>616</td>
<td>0.95</td>
</tr>
<tr>
<td>3000</td>
<td>557</td>
<td>0.82</td>
<td>637</td>
<td>1.08</td>
</tr>
<tr>
<td>3188</td>
<td>581</td>
<td>0.94</td>
<td>659</td>
<td>1.23</td>
</tr>
<tr>
<td>3375</td>
<td>606</td>
<td>1.08</td>
<td>681</td>
<td>1.38</td>
</tr>
<tr>
<td>3563</td>
<td>630</td>
<td>1.24</td>
<td>703</td>
<td>1.55</td>
</tr>
<tr>
<td>3750</td>
<td>655</td>
<td>1.41</td>
<td>726</td>
<td>1.74</td>
</tr>
</tbody>
</table>

50TC*D08 3 PHASE 7.5 TON VERTICAL SUPPLY

<table>
<thead>
<tr>
<th>CFM</th>
<th>1.2</th>
<th>1.4</th>
<th>1.6</th>
<th>1.8</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RPM</td>
<td>BHP</td>
<td>RPM</td>
<td>BHP</td>
<td>RPM</td>
</tr>
<tr>
<td>2250</td>
<td>806</td>
<td>1.60</td>
<td>856</td>
<td>1.87</td>
<td>903</td>
</tr>
<tr>
<td>2438</td>
<td>822</td>
<td>1.74</td>
<td>872</td>
<td>2.03</td>
<td>918</td>
</tr>
<tr>
<td>2625</td>
<td>839</td>
<td>1.90</td>
<td>887</td>
<td>2.19</td>
<td>933</td>
</tr>
<tr>
<td>2813</td>
<td>856</td>
<td>2.06</td>
<td>904</td>
<td>2.37</td>
<td>949</td>
</tr>
<tr>
<td>3000</td>
<td>873</td>
<td>2.24</td>
<td>921</td>
<td>2.56</td>
<td>966</td>
</tr>
<tr>
<td>3188</td>
<td>891</td>
<td>2.44</td>
<td>938</td>
<td>2.77</td>
<td>982</td>
</tr>
<tr>
<td>3375</td>
<td>909</td>
<td>2.65</td>
<td>955</td>
<td>2.99</td>
<td>1000</td>
</tr>
<tr>
<td>3563</td>
<td>927</td>
<td>2.88</td>
<td>973</td>
<td>3.23</td>
<td>1017</td>
</tr>
<tr>
<td>3750</td>
<td>946</td>
<td>3.12</td>
<td>992</td>
<td>3.48</td>
<td>1035</td>
</tr>
</tbody>
</table>

NOTE: For more information, see General Fan Performance Notes.

Boldface indicates field-supplied drive is required.

1. Recommend using field-supplied fan pulley (part no. KR11AZ002) and belt (part no. KR29AF054).

50TC*D08 3 PHASE 7.5 TON VERTICAL SUPPLY

<table>
<thead>
<tr>
<th>CFM</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RPM</td>
<td>BHP</td>
<td>RPM</td>
<td>BHP</td>
</tr>
<tr>
<td>2250</td>
<td>511</td>
<td>0.53</td>
<td>591</td>
<td>0.73</td>
</tr>
<tr>
<td>2438</td>
<td>540</td>
<td>0.64</td>
<td>616</td>
<td>0.85</td>
</tr>
<tr>
<td>2625</td>
<td>569</td>
<td>0.76</td>
<td>642</td>
<td>0.99</td>
</tr>
<tr>
<td>2813</td>
<td>599</td>
<td>0.90</td>
<td>669</td>
<td>1.14</td>
</tr>
<tr>
<td>3000</td>
<td>630</td>
<td>1.06</td>
<td>696</td>
<td>1.31</td>
</tr>
<tr>
<td>3188</td>
<td>661</td>
<td>1.23</td>
<td>724</td>
<td>1.50</td>
</tr>
<tr>
<td>3375</td>
<td>692</td>
<td>1.43</td>
<td>753</td>
<td>1.71</td>
</tr>
<tr>
<td>3563</td>
<td>723</td>
<td>1.65</td>
<td>782</td>
<td>1.94</td>
</tr>
<tr>
<td>3750</td>
<td>755</td>
<td>1.89</td>
<td>811</td>
<td>2.20</td>
</tr>
</tbody>
</table>

NOTE: For more information, see General Fan Performance Notes.

Boldface indicates field-supplied drive is required.

1. Recommend using field-supplied fan pulley (part no. KR11AZ002) and belt (part no. KR29AF054).
APPENDIX III. FAN PERFORMANCE (cont.)

50TC*D12 - 3 PHASE - 10 TON HORIZONTAL SUPPLY

<table>
<thead>
<tr>
<th>CFM</th>
<th>RPM</th>
<th>BHP</th>
<th>RPM</th>
<th>BHP</th>
<th>RPM</th>
<th>BHP</th>
<th>RPM</th>
<th>BHP</th>
<th>RPM</th>
<th>BHP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2</td>
<td></td>
<td>0.4</td>
<td></td>
<td>0.6</td>
<td></td>
<td>0.8</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>523</td>
<td>0.58</td>
<td>592</td>
<td>0.73</td>
<td>657</td>
<td>0.88</td>
<td>718</td>
<td>1.05</td>
<td>775</td>
<td>1.22</td>
</tr>
<tr>
<td>3250</td>
<td>555</td>
<td>0.71</td>
<td>620</td>
<td>0.87</td>
<td>681</td>
<td>1.04</td>
<td>739</td>
<td>1.21</td>
<td>794</td>
<td>1.39</td>
</tr>
<tr>
<td>3500</td>
<td>588</td>
<td>0.86</td>
<td>649</td>
<td>1.03</td>
<td>707</td>
<td>1.21</td>
<td>762</td>
<td>1.39</td>
<td>815</td>
<td>1.58</td>
</tr>
<tr>
<td>3750</td>
<td>621</td>
<td>1.03</td>
<td>679</td>
<td>1.21</td>
<td>734</td>
<td>1.40</td>
<td>786</td>
<td>1.59</td>
<td>837</td>
<td>1.79</td>
</tr>
<tr>
<td>4000</td>
<td>655</td>
<td>1.23</td>
<td>709</td>
<td>1.42</td>
<td>761</td>
<td>1.61</td>
<td>812</td>
<td>1.82</td>
<td>860</td>
<td>2.03</td>
</tr>
<tr>
<td>4250</td>
<td>689</td>
<td>1.45</td>
<td>741</td>
<td>1.65</td>
<td>790</td>
<td>1.86</td>
<td>838</td>
<td>2.07</td>
<td>885</td>
<td>2.29</td>
</tr>
<tr>
<td>4500</td>
<td>723</td>
<td>1.69</td>
<td>773</td>
<td>1.90</td>
<td>820</td>
<td>2.12</td>
<td>866</td>
<td>2.35</td>
<td>910</td>
<td>2.57</td>
</tr>
<tr>
<td>4750</td>
<td>758</td>
<td>1.96</td>
<td>805</td>
<td>2.19</td>
<td>850</td>
<td>2.42</td>
<td>894</td>
<td>2.65</td>
<td>937</td>
<td>2.89</td>
</tr>
<tr>
<td>5000</td>
<td>793</td>
<td>2.26</td>
<td>838</td>
<td>2.50</td>
<td>881</td>
<td>2.74</td>
<td>923</td>
<td>2.98</td>
<td>965</td>
<td>3.23</td>
</tr>
</tbody>
</table>

50TC*D12 - 3 PHASE - 10 VERTICAL SUPPLY

<table>
<thead>
<tr>
<th>CFM</th>
<th>RPM</th>
<th>BHP</th>
<th>RPM</th>
<th>BHP</th>
<th>RPM</th>
<th>BHP</th>
<th>RPM</th>
<th>BHP</th>
<th>RPM</th>
<th>BHP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.2</td>
<td></td>
<td>1.4</td>
<td></td>
<td>1.6</td>
<td></td>
<td>1.8</td>
<td></td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>830</td>
<td>1.39</td>
<td>883</td>
<td>1.57</td>
<td>934</td>
<td>1.76</td>
<td>982</td>
<td>1.95</td>
<td>1029</td>
<td>2.14</td>
</tr>
<tr>
<td>3250</td>
<td>847</td>
<td>1.57</td>
<td>897</td>
<td>1.76</td>
<td>946</td>
<td>1.96</td>
<td>993</td>
<td>2.16</td>
<td>1039</td>
<td>2.36</td>
</tr>
<tr>
<td>3500</td>
<td>865</td>
<td>1.77</td>
<td>914</td>
<td>1.97</td>
<td>961</td>
<td>2.18</td>
<td>1007</td>
<td>2.38</td>
<td>1051</td>
<td>2.60</td>
</tr>
<tr>
<td>3750</td>
<td>885</td>
<td>1.99</td>
<td>932</td>
<td>2.20</td>
<td>978</td>
<td>2.42</td>
<td>1022</td>
<td>2.64</td>
<td>1065</td>
<td>2.86</td>
</tr>
<tr>
<td>4000</td>
<td>907</td>
<td>2.24</td>
<td>952</td>
<td>2.46</td>
<td>996</td>
<td>2.68</td>
<td>1038</td>
<td>2.91</td>
<td>1080</td>
<td>3.14</td>
</tr>
<tr>
<td>4250</td>
<td>930</td>
<td>2.51</td>
<td>973</td>
<td>2.74</td>
<td>1015</td>
<td>2.97</td>
<td>1057</td>
<td>3.21</td>
<td>1097</td>
<td>3.45</td>
</tr>
<tr>
<td>4500</td>
<td>954</td>
<td>2.81</td>
<td>996</td>
<td>3.05</td>
<td>1037</td>
<td>3.29</td>
<td>1076</td>
<td>3.54</td>
<td>1115</td>
<td>3.79</td>
</tr>
<tr>
<td>4750</td>
<td>979</td>
<td>3.13</td>
<td>1019</td>
<td>3.38</td>
<td>1059</td>
<td>3.63</td>
<td>1097</td>
<td>3.89</td>
<td>1135</td>
<td>4.15</td>
</tr>
<tr>
<td>5000</td>
<td>1005</td>
<td>3.49</td>
<td>1044</td>
<td>3.74</td>
<td>1082</td>
<td>4.01</td>
<td>1119</td>
<td>4.27</td>
<td>1156</td>
<td>4.55</td>
</tr>
</tbody>
</table>

NOTES:
- For more information, see General Fan Performance Notes.
- Boldface indicates field-supplied drive is required.
- 1. Recommend using field-supplied fan pulley (part no. KR11AD912) and belt (part no. KR29AF051).
FAN PERFORMANCE (cont.)

50TC*D14

<table>
<thead>
<tr>
<th>CFM</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPM</td>
<td>BHP</td>
<td>RPM</td>
<td>BHP</td>
<td>RPM</td>
<td>BHP</td>
</tr>
<tr>
<td>3438</td>
<td>580</td>
<td>0.82</td>
<td>642</td>
<td>0.99</td>
<td>700</td>
</tr>
<tr>
<td>3750</td>
<td>621</td>
<td>1.03</td>
<td>679</td>
<td>1.21</td>
<td>734</td>
</tr>
<tr>
<td>4063</td>
<td>663</td>
<td>1.28</td>
<td>717</td>
<td>1.47</td>
<td>769</td>
</tr>
<tr>
<td>4375</td>
<td>706</td>
<td>1.56</td>
<td>757</td>
<td>1.77</td>
<td>805</td>
</tr>
<tr>
<td>4688</td>
<td>749</td>
<td>1.89</td>
<td>807</td>
<td>2.20</td>
<td>864</td>
</tr>
<tr>
<td>5000</td>
<td>793</td>
<td>2.26</td>
<td>861</td>
<td>2.74</td>
<td>923</td>
</tr>
<tr>
<td>5313</td>
<td>837</td>
<td>2.69</td>
<td>921</td>
<td>3.19</td>
<td>961</td>
</tr>
<tr>
<td>5625</td>
<td>882</td>
<td>3.16</td>
<td>961</td>
<td>3.68</td>
<td>999</td>
</tr>
<tr>
<td>5938</td>
<td>926</td>
<td>3.68</td>
<td>1001</td>
<td>4.23</td>
<td>1038</td>
</tr>
<tr>
<td>6250</td>
<td>971</td>
<td>4.26</td>
<td>1007</td>
<td>4.55</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: For more information, see General Fan Performance Notes.

1. Recommend using field-supplied fan pulley (part no. KR11AK012) and belt (part no. KR29AE055).

50TC*D14

<table>
<thead>
<tr>
<th>CFM</th>
<th>1.2</th>
<th>1.4</th>
<th>1.6</th>
<th>1.8</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPM</td>
<td>BHP</td>
<td>RPM</td>
<td>BHP</td>
<td>RPM</td>
<td>BHP</td>
</tr>
<tr>
<td>3438</td>
<td>850</td>
<td>1.72</td>
<td>910</td>
<td>1.92</td>
<td>957</td>
</tr>
<tr>
<td>3750</td>
<td>885</td>
<td>1.99</td>
<td>932</td>
<td>2.20</td>
<td>978</td>
</tr>
<tr>
<td>4063</td>
<td>912</td>
<td>2.31</td>
<td>957</td>
<td>2.53</td>
<td>1001</td>
</tr>
<tr>
<td>4375</td>
<td>941</td>
<td>2.66</td>
<td>984</td>
<td>2.89</td>
<td>1026</td>
</tr>
<tr>
<td>4688</td>
<td>972</td>
<td>3.05</td>
<td>1013</td>
<td>3.29</td>
<td>1053</td>
</tr>
<tr>
<td>5000</td>
<td>1005</td>
<td>3.49</td>
<td>1044</td>
<td>3.74</td>
<td>1082</td>
</tr>
<tr>
<td>5313</td>
<td>1038</td>
<td>3.97</td>
<td>1076</td>
<td>4.24</td>
<td>1113</td>
</tr>
<tr>
<td>5625</td>
<td>1073</td>
<td>4.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5938</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: For more information, see General Fan Performance Notes.

1. Recommend using field-supplied fan pulley (part no. KR11AK012) and belt (part no. KR29AE055).
Pulley Adjustment

<table>
<thead>
<tr>
<th>UNIT</th>
<th>MOTOR/DRIVE COMBO</th>
<th>MOTOR PULLEY TURNS OPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 phase</td>
<td>Standard Static</td>
<td>747</td>
</tr>
<tr>
<td></td>
<td>Medium Static</td>
<td>949</td>
</tr>
<tr>
<td></td>
<td>High Static</td>
<td>1102</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 phase</td>
<td>Standard Static</td>
<td>838</td>
</tr>
<tr>
<td></td>
<td>Medium Static</td>
<td>1084</td>
</tr>
<tr>
<td></td>
<td>High Static</td>
<td>1240</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 phase</td>
<td>Standard Static</td>
<td>838</td>
</tr>
<tr>
<td></td>
<td>Medium Static</td>
<td>1084</td>
</tr>
<tr>
<td></td>
<td>High Static</td>
<td>1240</td>
</tr>
</tbody>
</table>

NOTE: Do not adjust pulley further than 5 turns open.

- **Factory settings**
APPENDIX IV. ELECTRICAL DATA

50TC*D08

<table>
<thead>
<tr>
<th>V-Ph-Hz</th>
<th>RANGE</th>
<th>VOLTAGE</th>
<th>COMP (Cir 1)</th>
<th>COMP (Cir 2)</th>
<th>OFM (ea)</th>
<th>TYPE</th>
<th>Max</th>
<th>Max</th>
<th>EFF at Full Load</th>
<th>FLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>208-3-60</td>
<td>187 253</td>
<td>13.6 83</td>
<td>13.6 83</td>
<td>325 1.5</td>
<td>STD 1448</td>
<td>5.5</td>
<td>80%</td>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MED 2278</td>
<td>7.9</td>
<td>81%</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HIGH 4400</td>
<td>15.0</td>
<td>81%</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230-3-60</td>
<td>187 253</td>
<td>13.6 83</td>
<td>13.6 83</td>
<td>325 1.5</td>
<td>STD 1448</td>
<td>5.5</td>
<td>80%</td>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MED 2278</td>
<td>7.9</td>
<td>81%</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HIGH 4400</td>
<td>15.0</td>
<td>81%</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>460-3-60</td>
<td>414 506</td>
<td>6.1 41</td>
<td>6.1 41</td>
<td>325 0.8</td>
<td>STD 1448</td>
<td>2.7</td>
<td>80%</td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MED 2278</td>
<td>3.6</td>
<td>81%</td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HIGH 4400</td>
<td>7.4</td>
<td>81%</td>
<td>7.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>575-3-60</td>
<td>518 633</td>
<td>4.2 33</td>
<td>4.2 33</td>
<td>325 0.6</td>
<td>STD 1379</td>
<td>2.5</td>
<td>80%</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MED 3775</td>
<td>2.9</td>
<td>81%</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HIGH 4400</td>
<td>5.9</td>
<td>81%</td>
<td>5.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

50TC*D12

<table>
<thead>
<tr>
<th>V-Ph-Hz</th>
<th>RANGE</th>
<th>VOLTAGE</th>
<th>COMP (Cir 1)</th>
<th>COMP (Cir 2)</th>
<th>OFM (ea)</th>
<th>TYPE</th>
<th>Max</th>
<th>Max</th>
<th>EFF at Full Load</th>
<th>FLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>208-3-60</td>
<td>187 253</td>
<td>15.6 110</td>
<td>15.9 110</td>
<td>325 1.5</td>
<td>STD 2120</td>
<td>5.5</td>
<td>80%</td>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MED 3775</td>
<td>10.5</td>
<td>81%</td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HIGH 4400</td>
<td>15.0</td>
<td>81%</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230-3-60</td>
<td>187 253</td>
<td>15.6 110</td>
<td>15.9 110</td>
<td>325 1.5</td>
<td>STD 2120</td>
<td>5.5</td>
<td>80%</td>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MED 3775</td>
<td>10.5</td>
<td>81%</td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HIGH 4400</td>
<td>15.0</td>
<td>81%</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>460-3-60</td>
<td>414 506</td>
<td>7.7 52</td>
<td>7.7 52</td>
<td>325 0.8</td>
<td>STD 2120</td>
<td>2.7</td>
<td>80%</td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MED 3775</td>
<td>4.6</td>
<td>81%</td>
<td>4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HIGH 4400</td>
<td>7.4</td>
<td>81%</td>
<td>7.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>575-3-60</td>
<td>518 633</td>
<td>5.8 39</td>
<td>5.7 39</td>
<td>325 0.6</td>
<td>STD 1390</td>
<td>2.1</td>
<td>80%</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MED 3775</td>
<td>2.9</td>
<td>81%</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HIGH 4400</td>
<td>5.9</td>
<td>81%</td>
<td>5.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

50TC*D14

<table>
<thead>
<tr>
<th>V-Ph-Hz</th>
<th>RANGE</th>
<th>VOLTAGE</th>
<th>COMP (Cir 1)</th>
<th>COMP (Cir 2)</th>
<th>OFM</th>
<th>TYPE</th>
<th>Max</th>
<th>Max</th>
<th>EFF at Full Load</th>
<th>FLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>208-3-60</td>
<td>187 253</td>
<td>19.0 123</td>
<td>22.4 149</td>
<td>1288 6.2</td>
<td>STD 2615</td>
<td>7.9</td>
<td>81%</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MED 3775</td>
<td>10.5</td>
<td>81%</td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HIGH 4400</td>
<td>15.0</td>
<td>81%</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230-3-60</td>
<td>187 253</td>
<td>19.0 123</td>
<td>22.4 149</td>
<td>1288 6.2</td>
<td>STD 2615</td>
<td>7.9</td>
<td>81%</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MED 3775</td>
<td>10.5</td>
<td>81%</td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HIGH 4400</td>
<td>15.0</td>
<td>81%</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>460-3-60</td>
<td>414 506</td>
<td>9.7 62</td>
<td>10.6 75</td>
<td>1288 3.1</td>
<td>STD 2615</td>
<td>3.6</td>
<td>81%</td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MED 3775</td>
<td>4.6</td>
<td>81%</td>
<td>4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HIGH 4400</td>
<td>7.4</td>
<td>81%</td>
<td>7.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>575-3-60</td>
<td>518 633</td>
<td>7.4 50</td>
<td>7.7 54</td>
<td>1288 2.5</td>
<td>STD 3775</td>
<td>2.9</td>
<td>81%</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MED 3775</td>
<td>2.9</td>
<td>81%</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HIGH 4400</td>
<td>5.9</td>
<td>81%</td>
<td>5.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX IV. ELECTRICAL DATA (cont)

MCA/MOCP DETERMINATION NO C.O. OR UNPWRD C.O.

<table>
<thead>
<tr>
<th>UNIT</th>
<th>IFM TYPE</th>
<th>NOM. V. PH. - HZ</th>
<th>ELECTRIC HEATER</th>
<th>NO C.O. or UNPWRD C.O.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>NO PE.</td>
<td>w/ PE. (pwr'd fr/unit)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MCA</td>
<td>MOCP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FLA</td>
<td>LRA</td>
</tr>
<tr>
<td>STD</td>
<td>208/220-3-60</td>
<td>288/300-3-60</td>
<td>50TC**08</td>
<td>7.8/10.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.9</td>
<td>16.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16.5</td>
<td>19.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27.8</td>
<td>33.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33.0</td>
<td>39.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>41.7</td>
<td>50.2</td>
</tr>
<tr>
<td>MED</td>
<td>208/220-3-60</td>
<td>288/300-3-60</td>
<td>50TC**08</td>
<td>7.8/10.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.9</td>
<td>16.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16.5</td>
<td>19.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27.8</td>
<td>33.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33.0</td>
<td>39.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>41.7</td>
<td>50.2</td>
</tr>
<tr>
<td>HIGH</td>
<td>208/220-3-60</td>
<td>288/300-3-60</td>
<td>50TC**08</td>
<td>7.8/10.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.9</td>
<td>16.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16.5</td>
<td>19.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27.8</td>
<td>33.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33.0</td>
<td>39.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>41.7</td>
<td>50.2</td>
</tr>
</tbody>
</table>

* Nominal valves, listed as 208/240V, 480V or 600V as appropriate. See Legend and calculations.
APPENDIX IV. ELECTRICAL DATA (cont)

MCA/MOCP DETERMINATION NO C.O. OR UNPWRD C.O. (cont)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>FLA</th>
<th>NO C.O. or UNPWRD C.O.</th>
<th>NO PE.</th>
<th>Disc. Size</th>
<th>Disc. Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>MCA</td>
<td>MOCP</td>
<td>FLA</td>
</tr>
<tr>
<td>Nom (kW)</td>
<td>FA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLA</td>
<td>FLA</td>
<td>LRA</td>
<td>FLA</td>
<td>LRA</td>
<td>FLA</td>
</tr>
<tr>
<td>STD</td>
<td>7.8/10.4</td>
<td>21.7/25.0</td>
<td>45.8/45.8</td>
<td>60</td>
<td>44</td>
</tr>
<tr>
<td>MED</td>
<td>7.8/10.4</td>
<td>21.7/25.0</td>
<td>50.6</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>HIGH</td>
<td>7.8/10.4</td>
<td>21.7/25.0</td>
<td>55.6</td>
<td>80</td>
<td>55</td>
</tr>
<tr>
<td>STD</td>
<td>16.5</td>
<td>19.8</td>
<td>28.0</td>
<td>30</td>
<td>26</td>
</tr>
<tr>
<td>MED</td>
<td>16.5</td>
<td>19.8</td>
<td>30.3</td>
<td>40</td>
<td>28</td>
</tr>
<tr>
<td>HIGH</td>
<td>16.5</td>
<td>19.8</td>
<td>34.0</td>
<td>45</td>
<td>30</td>
</tr>
<tr>
<td>STD</td>
<td>17.0</td>
<td>20.4</td>
<td>28.0</td>
<td>30</td>
<td>26</td>
</tr>
<tr>
<td>MED</td>
<td>17.0</td>
<td>20.4</td>
<td>34.0</td>
<td>45</td>
<td>30</td>
</tr>
<tr>
<td>HIGH</td>
<td>17.0</td>
<td>20.4</td>
<td>40.9</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>STD</td>
<td>17.0</td>
<td>20.4</td>
<td>40.9</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>MED</td>
<td>17.0</td>
<td>20.4</td>
<td>40.9</td>
<td>70</td>
<td>73</td>
</tr>
<tr>
<td>HIGH</td>
<td>17.0</td>
<td>20.4</td>
<td>40.9</td>
<td>70</td>
<td>73</td>
</tr>
</tbody>
</table>

* Nominal values, listed as 208/240V, 480V or 600V as appropriate.

See Legend and calculations.
MCA/MOCP Determination No C.O. or Unpwr'd C.O. (cont)

Electric Heaters

<table>
<thead>
<tr>
<th>Unit</th>
<th>IFM Type</th>
<th>Nominal Values (kW)</th>
<th>FLA</th>
<th>MCA</th>
<th>MOCP</th>
<th>Disc. Size FLA</th>
<th>MCA</th>
<th>MOCP</th>
<th>Disc. Size FLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>208/240-3-60</td>
<td>STD</td>
<td>7.8/10.4</td>
<td>21.7/25.0</td>
<td>60.7</td>
<td>80</td>
<td>63</td>
<td>360</td>
<td>64.5</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.0/16.0</td>
<td>33.4/38.5</td>
<td>60.7/60.7</td>
<td>80/80</td>
<td>63/63</td>
<td>360/360</td>
<td>64.5/64.5</td>
<td>80/80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24.0/32.0</td>
<td>66.7/77.0</td>
<td>92.8/105.6</td>
<td>100/110</td>
<td>85/97</td>
<td>360/360</td>
<td>97.5/110.4</td>
<td>100/125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31.8/42.4</td>
<td>88.4/102.0</td>
<td>119.9/136.9</td>
<td>125/150</td>
<td>110/126</td>
<td>360/360</td>
<td>124.6/141.6</td>
<td>125/150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37.6/50.0</td>
<td>104.2/120.3</td>
<td>139.6/129.7</td>
<td>150/150</td>
<td>128/147</td>
<td>360/360</td>
<td>144.4/134.4</td>
<td>150/150</td>
</tr>
<tr>
<td>208/240-3-60</td>
<td>MED</td>
<td>7.8/10.4</td>
<td>21.7/25.0</td>
<td>63.2</td>
<td>80</td>
<td>66</td>
<td>377</td>
<td>67.0</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.0/16.0</td>
<td>33.4/38.5</td>
<td>63.2/63.2</td>
<td>80/80</td>
<td>66/66</td>
<td>377/377</td>
<td>67.0/67.0</td>
<td>80/80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24.0/32.0</td>
<td>66.7/77.0</td>
<td>95.9/108.8</td>
<td>100/110</td>
<td>88/100</td>
<td>377/377</td>
<td>100.6/113.5</td>
<td>110/125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31.8/42.4</td>
<td>88.4/102.0</td>
<td>123.0/140.0</td>
<td>125/150</td>
<td>113/129</td>
<td>377/377</td>
<td>127.8/144.8</td>
<td>150/150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37.6/50.0</td>
<td>104.2/120.3</td>
<td>142.8/132.8</td>
<td>150/150</td>
<td>131/150</td>
<td>377/377</td>
<td>147.5/137.6</td>
<td>150/150</td>
</tr>
<tr>
<td>208/240-3-60</td>
<td>HIGH</td>
<td>7.8/10.4</td>
<td>21.7/25.0</td>
<td>68.2</td>
<td>80</td>
<td>72</td>
<td>386</td>
<td>72.0</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.0/16.0</td>
<td>33.4/38.5</td>
<td>68.2/68.2</td>
<td>80/80</td>
<td>72/72</td>
<td>386/386</td>
<td>72.0/72.0</td>
<td>80/80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24.0/32.0</td>
<td>66.7/77.0</td>
<td>102.1/115.0</td>
<td>110/125</td>
<td>94/106</td>
<td>386/386</td>
<td>106.9/119.8</td>
<td>110/125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31.8/42.4</td>
<td>88.4/102.0</td>
<td>128.3/146.3</td>
<td>150/150</td>
<td>119/135</td>
<td>386/386</td>
<td>134.0/151.0</td>
<td>150/150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37.6/50.0</td>
<td>104.2/120.3</td>
<td>149.0/139.1</td>
<td>150/175</td>
<td>137/156</td>
<td>386/388</td>
<td>153.8/143.8</td>
<td>175/175</td>
</tr>
<tr>
<td>460-3-60</td>
<td>STD</td>
<td>13.9</td>
<td>16.7</td>
<td>29.5</td>
<td>40</td>
<td>31</td>
<td>181</td>
<td>31.3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.5</td>
<td>19.8</td>
<td>29.5</td>
<td>40</td>
<td>31</td>
<td>181</td>
<td>31.3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33.0</td>
<td>39.7</td>
<td>53.9</td>
<td>60</td>
<td>50</td>
<td>181</td>
<td>56.1</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41.7</td>
<td>50.2</td>
<td>67.0</td>
<td>70</td>
<td>62</td>
<td>181</td>
<td>69.3</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50.0</td>
<td>60.1</td>
<td>64.4</td>
<td>70</td>
<td>73</td>
<td>181</td>
<td>66.6</td>
<td>70</td>
</tr>
<tr>
<td>460-3-60</td>
<td>MED</td>
<td>13.9</td>
<td>16.7</td>
<td>30.5</td>
<td>40</td>
<td>32</td>
<td>190</td>
<td>32.3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.5</td>
<td>19.8</td>
<td>30.5</td>
<td>40</td>
<td>32</td>
<td>190</td>
<td>32.5</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33.0</td>
<td>39.7</td>
<td>55.1</td>
<td>60</td>
<td>51</td>
<td>190</td>
<td>57.4</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41.7</td>
<td>50.2</td>
<td>68.3</td>
<td>70</td>
<td>63</td>
<td>190</td>
<td>70.5</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50.0</td>
<td>60.1</td>
<td>65.6</td>
<td>80</td>
<td>74</td>
<td>190</td>
<td>67.9</td>
<td>80</td>
</tr>
<tr>
<td>460-3-60</td>
<td>HIGH</td>
<td>13.9</td>
<td>16.7</td>
<td>33.5</td>
<td>40</td>
<td>35</td>
<td>194</td>
<td>35.3</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.5</td>
<td>19.8</td>
<td>33.5</td>
<td>40</td>
<td>35</td>
<td>194</td>
<td>35.3</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33.0</td>
<td>39.7</td>
<td>58.9</td>
<td>60</td>
<td>54</td>
<td>194</td>
<td>61.1</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41.7</td>
<td>50.2</td>
<td>72.0</td>
<td>80</td>
<td>66</td>
<td>194</td>
<td>74.3</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50.0</td>
<td>60.1</td>
<td>69.4</td>
<td>80</td>
<td>78</td>
<td>194</td>
<td>71.6</td>
<td>80</td>
</tr>
<tr>
<td>575-3-60</td>
<td>STD</td>
<td>17.0</td>
<td>20.4</td>
<td>22.3</td>
<td>30</td>
<td>23</td>
<td>142</td>
<td>25.1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34.0</td>
<td>40.9</td>
<td>54.6</td>
<td>60</td>
<td>50</td>
<td>142</td>
<td>59.4</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>51.0</td>
<td>61.3</td>
<td>64.8</td>
<td>70</td>
<td>74</td>
<td>142</td>
<td>69.6</td>
<td>80</td>
</tr>
<tr>
<td>575-3-60</td>
<td>MED</td>
<td>17.0</td>
<td>20.4</td>
<td>22.3</td>
<td>30</td>
<td>23</td>
<td>142</td>
<td>25.1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34.0</td>
<td>40.9</td>
<td>54.6</td>
<td>60</td>
<td>50</td>
<td>142</td>
<td>59.4</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>51.0</td>
<td>61.3</td>
<td>64.8</td>
<td>70</td>
<td>74</td>
<td>142</td>
<td>69.6</td>
<td>80</td>
</tr>
<tr>
<td>575-3-60</td>
<td>HIGH</td>
<td>17.0</td>
<td>20.4</td>
<td>25.1</td>
<td>30</td>
<td>27</td>
<td>156</td>
<td>28.9</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34.0</td>
<td>40.9</td>
<td>58.1</td>
<td>60</td>
<td>53</td>
<td>156</td>
<td>62.9</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>51.0</td>
<td>61.3</td>
<td>68.3</td>
<td>80</td>
<td>77</td>
<td>156</td>
<td>73.1</td>
<td>80</td>
</tr>
</tbody>
</table>

* Nominal valves, listed as 208/240V, 480V or 600V as appropriate. See Legend and calculations.
APPENDIX IV. WIRING DIAGRAM LIST

Wiring Diagrams

<table>
<thead>
<tr>
<th>SIZE</th>
<th>VOLTAGE</th>
<th>CONTROL</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>D08</td>
<td>208/230-3-60</td>
<td>48TM501323</td>
<td>48TM501324</td>
</tr>
<tr>
<td></td>
<td>460-3-60</td>
<td>48TM501323</td>
<td>48TM501324</td>
</tr>
<tr>
<td></td>
<td>575-3-60</td>
<td>48TM501323</td>
<td>48TM501324</td>
</tr>
<tr>
<td>D12</td>
<td>208/230-3-60</td>
<td>48TM501323</td>
<td>48TM501324</td>
</tr>
<tr>
<td></td>
<td>460-3-60</td>
<td>48TM501323</td>
<td>48TM501324</td>
</tr>
<tr>
<td></td>
<td>575-3-60</td>
<td>48TM501323</td>
<td>48TM501324</td>
</tr>
<tr>
<td>D14</td>
<td>208/230-3-60</td>
<td>48TM501247</td>
<td>48TM501248</td>
</tr>
<tr>
<td></td>
<td>460-3-60</td>
<td>48TM501247</td>
<td>48TM501248</td>
</tr>
<tr>
<td></td>
<td>575-3-60</td>
<td>48TM501247</td>
<td>48TM501248</td>
</tr>
<tr>
<td>All</td>
<td>PremierLink*</td>
<td>48TM500983</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>RTU-MP*</td>
<td>48TM500987</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Component arrangement on Control; Legend on Power Schematic

*PremierLink™ and RTU-MP control labels overlay a portion of the base unit control label. The base unit label drawing and the control option drawing are required to provide a complete unit control diagram.
APPENDIX VI. MOTORMASTER SENSOR LOCATIONS

Fig. 82 - 50TC*D08 and 50TC*D12

<table>
<thead>
<tr>
<th>UNIT SIZE</th>
<th>UNIT TONNAGE</th>
<th>DIM X</th>
</tr>
</thead>
<tbody>
<tr>
<td>48/50TC-D08</td>
<td>7.5</td>
<td>5.0*</td>
</tr>
<tr>
<td>48/50TC-D12</td>
<td>10.0</td>
<td>11.0*</td>
</tr>
</tbody>
</table>

Manufacturer reserves the right to change, at any time, specifications and designs without notice and without obligations.

Copyright 2009 Carrier Corp. • 7310 W. Morris St. • Indianapolis, IN 46231 Printed in U.S.A. Edition Date: 6/09

Catalog No: 50TC – 3SM

Replaces: 50TC – 2SM
START-UP CHECKLIST
(Remove and Store in Job File)

I. PRELIMINARY INFORMATION
MODEL NO.: __________________________ SERIAL NO.: __________________________
DATE: __________________________ TECHNICIAN: __________________________

II. PRE-START-UP (insert checkmark in box as each item is completed)
☐ VERIFY THAT JOBSITE VOLTAGE AGREES WITH VOLTAGE LISTED ON RATING PLATE
☐ VERIFY THAT ALL PACKAGING MATERIALS HAVE BEEN REMOVED FROM UNIT
☐ REMOVE ALL SHIPPING HOLD DOWN BOLTS AND BRACKETS PER INSTALLATION INSTRUCTIONS
☐ VERIFY THAT CONDENSATE CONNECTION IS INSTALLED PER INSTALLATION INSTRUCTIONS
☐ CHECK REFRIGERANT PIPING FOR INDICATIONS OF LEAKS; INVESTIGATE AND REPAIR IF NECESSARY
☐ CHECK ALL ELECTRICAL CONNECTIONS AND TERMINALS FOR TIGHTNESS
☐ CHECK THAT RETURN (INDOOR) AIR FILTERS ARE CLEAN AND IN PLACE
☐ VERIFY THAT UNIT INSTALLATION IS LEVEL
☐ CHECK FAN WHEELS AND PROPELLER FOR LOCATION IN HOUSING/ORIFICE AND SETSCREW TIGHTNESS
☐ CHECK TO ENSURE THAT ELECTRICAL WIRING IS NOT IN CONTACT WITH REFRIGERANT LINES OR SHARP METAL EDGES
☐ CHECK PULLEY ALIGNMENT AND BELT TENSION PER INSTALLATION INSTRUCTIONS

III. START-UP

ELECTRICAL

SUPPLY VOLTAGE

<table>
<thead>
<tr>
<th>L1-L2</th>
<th>L2-L3</th>
<th>L3-L1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMPRESSOR 1

<table>
<thead>
<tr>
<th>L1</th>
<th>L2</th>
<th>L3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMPRESSOR 2

<table>
<thead>
<tr>
<th>L1</th>
<th>L2</th>
<th>L3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INDOOR-FAN AMPS

<table>
<thead>
<tr>
<th>L1</th>
<th>L2</th>
<th>L3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TEMPERATURES

<table>
<thead>
<tr>
<th>OUTDOOR-AIR TEMPERATURE</th>
<th>DB</th>
</tr>
</thead>
<tbody>
<tr>
<td>RETURN-AIR TEMPERATURE</td>
<td>DB</td>
</tr>
<tr>
<td>COOLING SUPPLY AIR</td>
<td>DB</td>
</tr>
</tbody>
</table>

PRESSURES (Cooling Mode)

<table>
<thead>
<tr>
<th>Cir 1</th>
<th>Cir 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFRIGERANT SUCTION</td>
<td>PSIG</td>
</tr>
<tr>
<td>REFRIGERANT DISCHARGE</td>
<td>PSIG</td>
</tr>
</tbody>
</table>

☐ VERIFY THAT 3-PHASE FAN MOTOR AND BLOWER ARE ROTATING IN CORRECT DIRECTION.
☐ VERIFY THAT 3-PHASE SCROLL COMPRESSORS ARE ROTATING IN THE CORRECT DIRECTION
☐ VERIFY REFRIGERANT CHARGE USING CHARGING CHARTS

GENERAL
☐ SET ECONOMIZER MINIMUM VENT AND CHANGEOVER SETTINGS TO MATCH JOB REQUIREMENTS (IF EQUIPPED)