Installation Instructions

TABLE OF CONTENTS
PACKAGE USAGE ... 1
SAFETY CONSIDERATIONS 1
PACKAGE CONTENTS 1
GENERAL ... 2
ACCESSORIES LIST 2
VERTICAL INSTALLATION 2
HORIZONTAL INSTALLATION 7
CONFIGURATION ... 9
OPERATION .. 13
TROUBLESHOOTING 14

IMPORTANT: Read these instructions completely before attempting to install the accessory Economizer IV.

PACKAGE CONTENTS

<table>
<thead>
<tr>
<th>UNIT SIZE</th>
<th>PART NUMBER</th>
<th>QTY</th>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>17, 20, 24</td>
<td>CRECOMZR052A00</td>
<td>1</td>
<td>Damper Assembly</td>
</tr>
<tr>
<td>28</td>
<td>CRECOMZR053A00</td>
<td>1</td>
<td>Upper End Economizer Panel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Bottom Panel w/Relief Damper (for vertical only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Bottom Panel #2 (for horizontal only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Side Replacement Panel (for horizontal only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Hood Angles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Hood Side Plates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Hood Top</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Side Filter Supports</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Side Drip Angles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Top Hood Diveters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Supply Air Temperature Sensor (SAT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
<td>Screws</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Seal Strip</td>
</tr>
<tr>
<td>28</td>
<td>CRECOMZR053A00</td>
<td>1</td>
<td>Damper Assembly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Upper End Economizer Panel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Bottom Panel w/Relief Damper (for vertical only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Bottom Panel #2 (for horizontal only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Hood Angles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Hood Side Panels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Hood Top</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Outdoor Air Screens</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Side Filter Supports</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Side Drip Angles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Top Hood Diveters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Supply Air Temperature Sensor (SAT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
<td>Screws</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Seal Strip</td>
</tr>
</tbody>
</table>

SAFETY CONSIDERATIONS
Installation and servicing of air-conditioning equipment can be hazardous due to system pressure and electrical components. Only trained and qualified service personnel should install, repair, or service air-conditioning equipment.

Untrained personnel can perform the basic maintenance functions. All other operations should be performed by trained service personnel. When working on air-conditioning equipment, observe precautions in the literature, tags and labels attached to the unit, and other safety precautions that may apply.

Follow all safety codes. Wear safety glasses and work gloves.

Recognize safety information. This is the safety-alert symbol △. When you see this symbol on the unit and in instructions or manuals, be alert to the potential for personal injury.

Understand the signal words DANGER, WARNING, and CAUTION. These words are used with the safety-alert symbol. DANGER identifies the most serious hazards which will result in severe personal injury or death. WARNING signifies a hazard which could result in personal injury or death. CAUTION is used to identify unsafe practices which may result in minor personal injury or product and property damage. NOTE is used to highlight suggestions which will result in enhanced installation, reliability, or operation.
Table 1 – EconoMi$er IV Sensor Usage

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>ECONOMISER IV WITH OUTDOOR AIR DRY BULB SENSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor Air Dry Bulb</td>
<td>Accessories Required</td>
</tr>
<tr>
<td>Differential Dry Bulb</td>
<td>None. The outdoor air dry bulb sensor is factory installed.</td>
</tr>
<tr>
<td>Single Enthalpy</td>
<td>CRTEMPSN002A00*</td>
</tr>
<tr>
<td>Differential Enthalpy</td>
<td>HH57AC078</td>
</tr>
<tr>
<td>CO₂ for DCV Control using a Wall-Mounted CO₂ Sensor</td>
<td>33ZCSENCO2 or CGCDXSEN004A00†</td>
</tr>
<tr>
<td>CO₂ Room Sensor (4 to 20 mA)</td>
<td>CRCBDIOX005A00†</td>
</tr>
<tr>
<td>Space Temperature and CO₂ Room Sensor with Override (4 to 20 mA)</td>
<td>33ZCT56CO2</td>
</tr>
<tr>
<td>Space Temperature and CO₂ Room Sensor with Override and Set Point (4 to 20 mA)</td>
<td>33ZCT55CO2</td>
</tr>
</tbody>
</table>

* CRENTDIF004A00 and CRTEMPSN002A00 accessories are used on many different base units. As such, these kits may contain parts that will not be needed for installation.
† 33ZCSENCO2 and CGCDXSEN004A00 are accessory CO₂ sensors.
** 33ZCASPCO2 and CGCDXASP001A00 are accessory aspirator boxes required for duct-mounted applications.
††CRCBDIOX005A00 is an accessory that contains both 33ZCSENCO2 and 33ZCASPCO2 accessories.

WARNING

ELECTRICAL SHOCK HAZARD
Failure to follow this warning could result in personal injury and/or death.
Disconnect power supply and install lockout tag before attempting to install the accessory.

GENERAL

The EconoMi$er IV system utilizes the latest technology available for integrating the use of free cooling with mechanical cooling for packaged rooftop units. The solid-state control system optimizes energy consumption, zone comfort, and equipment cycling by operating the compressors when the outdoor-air temperature is too warm, integrating the compressor with outdoor air when free cooling is available, and locking out the compressor when outdoor-air temperature is too cold. Demand ventilation is supported.

The EconoMi$er IV system utilizes gear-drive technology with a direct-mount spring return actuator that will close upon loss of power. The Economizer IV system comes standard with an outdoor air temperature sensor, supply air temperature sensor, and low temperature compressor lockout switch. Return air temperature, indoor enthalpy, and outdoor enthalpy sensors are available for field installation. Field-installed CO₂ sensors are available. Barometric relief dampers provide natural building pressurization control. Barometric relief dampers are built into the design and are standard. An optional power exhaust system is available for applications requiring even greater exhaust capabilities. The power exhaust set point is adjustable at the EconoMi$er IV controller.

See Package Contents and Package Usage tables for more information. See Table 1 for sensor usage.

ACCESSORIES LIST

The EconoMi$er IV has several field-installed accessories available to optimize performance. Refer to Table 2 for authorized parts.

Table 2 – EconoMi$er IV Field-Installed Accessories

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Exhaust 208–230 v 3 Ph</td>
<td>CRPWREXH068A00</td>
</tr>
<tr>
<td>Power Exhaust 460 v 3 Ph</td>
<td>CRPWREXH069A00</td>
</tr>
<tr>
<td>Power Exhaust 575 v 3 Ph</td>
<td>CRPWREXH070A00</td>
</tr>
<tr>
<td>Return Air Temperature Sensor</td>
<td>CRTEMPSN002A00</td>
</tr>
<tr>
<td>Outdoor Air Enthalpy Sensor</td>
<td>HH57AC078</td>
</tr>
<tr>
<td>Indoor Air Enthalpy Sensor</td>
<td>CRENTDIF004A00</td>
</tr>
<tr>
<td>Return Air CO₂ Sensor (4 to 20 mA)</td>
<td>CRCBDIOX005A00</td>
</tr>
<tr>
<td>CO₂ Room Sensor (4 to 20 mA)</td>
<td>33ZCSENCO2 or CGCDXASP001A00</td>
</tr>
<tr>
<td>Aspirator Box for Duct Mount CO₂ (4 to 20 mA)</td>
<td>33ZCASPCO2 or CGCDXASP001A00</td>
</tr>
<tr>
<td>Space Temperature and CO₂ Room Sensor with Override (4 to 20 mA)</td>
<td>33ZCT55CO2</td>
</tr>
<tr>
<td>Space Temperature and CO₂ Room Sensor with Override and Set Point (4 to 20 mA)</td>
<td>33ZCT56CO2</td>
</tr>
</tbody>
</table>

VERTICAL INSTALLATION

These economizers are designed to work in both a vertical and horizontal applications. These instructions are for a vertical installation.

1. Turn off unit power supply and install lockout tag.
2. Prepare the unit for economizer installation:
 a. For units with 2 position damper installed, remove the outside air hood. Unplug the damper actuator and remove assembly from unit.
 b. For units with manual damper installed, remove the manual damper and hood.
3. Remove the upper panel and bottom panel (provided with the HVAC unit) on the end of the unit to expose the return section. (See Fig. 1.) Save the screws for use later when replacing the panel. The panels can be discarded.
CAUTION

EQUIPMENT DAMAGE HAZARD
Failure to follow this caution may result in personal injury and damage to unit.
Cover the duct opening as a precaution so objects cannot fall into the return duct opening. Be sure to remove the cover when installation is complete.

4. Remove the unit’s left side corner post and left side panel from the unit to allow for easy economizer installation. (See Fig. 2.)
5. Install economizer, as shown in Fig 2, into the return air section of the unit. Be careful not to pinch the wires during installation. Bottom of economizer will rest on the base of the unit. (See Fig. 5.)
6. Reinstall the left side corner post on to the unit. Note the corner post will sit behind the economizer flange. (See Fig. 3.) Screw through the corner post and through the economizer. (See Fig. 3 and 4.)
7. Insert provided screw through the bottom left rear of the economizer and into the unit base. (See Fig. 5.) Reinstall the unit’s left side panel.
8. Before the economizer is secured in place on the right hand side, remove and save the 12-pin jumper plug from the unit wiring harness. (See Fig. 6.) Insert the economizer plug into the unit wiring harness plug.

NOTE: The 12-pin jumper plug should be saved for future use in the event that the EconoMi$er IV is removed from the unit. The jumper plug is not needed as long as the EconoMi$er IV is installed.

9. Remove the indoor-fan motor access panel. (See Fig 1.)
10. Install the supply air temperature sensor (SAT). The sensor looks like an eyelet terminal with 2 attached wires, and is shipped in the economizer hardware bag. The sensor is located on the “crimped” end and is sealed for moisture. Mount the SAT to the indoor blower housing. (See Fig. 7.) Use the provided screw to secure in place. Attach the PINK and VIOLET wires in the unit to the sensor.

11. Replace the indoor-fan motor access panel.

12. Install the bottom panel with the relief damper attached on the unit. (See Fig 8.) Screw panel in place.

NOTE: Remove the bottom screw holding the relief blade closed.

13. Install the upper end economizer panel over the economizer’s outside air damper, and above the bottom panel. Screw panel in place and screw panel into economizer in 2 places. (See Fig 8.)

Fig. 6 - Unit Wiring Harness

Fig. 7 - Blower Housing

Fig. 8 - End View of Unit

Fig. 9 - EconoMi$er IV Component Locations
14. Assemble the outside air hood per Fig 10 and 11.
 a. Install four hood angles to the upper end panel using the screws provided.
 b. Apply seal strip to mating flanges on the side plates of the hood and the hood top.
 c. Secure the hood side plates to the panel using screws provided.
 d. On 44 inch chassis, remove screws across top cover. Attach hood top to hood side plates (on 44 inch chassis, flange will slide behind flange of top cover).
 e. On 44 inch chassis, reinstall the screws previously removed. On the 52 inch chassis, secure top flange using screws provided in kit.
 f. Install the front outdoor air screens by sliding them into the channel formed by the four angles installed previously. Make sure the screens extend across the entire length of the hood.

NOTE: Screens may be left out at this time to allow for EconoMi$er IV adjustments.

 g. Install the side filter supports using the screws provided.
 h. Install the side drip edge angles using the screws provided.
 i. Run a continuous length of seal strip across the hood covering the engagement hole in the lower hood.
 j. Install top diverter using screws provided.

15. Install the hood assembly on to the unit. (See Fig. 11 and 12.)

16. Through the outdoor air hood, review and adjust the EconoMi$er IV controller settings. See “Operation” section of this manual for details.
 a. The standard EconoMi$er IV controller has a factory setting of “C” for the outdoor air temperature changeover and 55°F (fixed) for the supply air temperature sensor. The outdoor air temperature setting can be adjusted at the controller.
 b. The low temperature compressor lockout switch is fixed at 42°F.
 c. The minimum position for the outdoor air damper can be configured for specific job requirements at the controller.
 d. Settings for the optional return air temperature sensor, outdoor enthalpy sensor, indoor enthalpy sensor, power exhaust, and CO2 sensor can be configured at the controller.

17. Install the hood screens and other approved EconoMi$er IV accessories.
Outdoor Air Hood

Relief Damper

Fig. 11 - Hood Assembly

Fig. 12 - Hood Assembly Installed on Unit

Economizer Wiring Diagram

Fig. 13 - Economizer Wiring Diagram

ECONOMIZER (FIOP / ACCESSORY)

ECONOMIZER NOTES:
1. 620 OHM, 1 WATT 5% RESISTER SHOULD BE REMOVED ONLY WHEN USING DIFFERENTIAL ENTHALPY OR DRY BULB.
2. IF A SEPERATE FIELD SUPPLIED 24V TRANSFORMER IS USED FOR THE IAQ SENSOR POWER SUPPLY, IT CANNOT HAVE THE SECONDARY OF THE TRANSFORMER GROUNDED.
3. FOR FIELD INSTALLED REMOTE MINIMUM POSITION POT, REMOVE BLACK WIRE JUMPER BETWEEN P AND P1 AND SET CONTROL MINIMUM POSITION POT TO THE MINIMUM POSITION.
HORIZONTAL INSTALLATION
These economizers are designed to work in both vertical and horizontal applications. These instructions are for a horizontal application.

The unit has a horizontal duct opening next to the horizontal supply duct opening. However, in this application, with an economizer, the horizontal duct will actually come into the unit underneath the outdoor air hood. (See Fig. 17.)

1. Turn off unit power supply and install lockout tag.
2. Prepare the unit for economizer installation:
 a. For units with 2 position damper installed, remove the outside air hood. Unplug the damper actuator and remove assembly from unit.
 b. For units with manual damper installed, remove the manual damper and hood.
3. Remove the upper panel and bottom panel (provided with the HVAC unit). On the end of the unit to expose the return section. (See Fig 1.) Save the screws for use later when replacing the panel. The panels can be discarded.
4. Remove the unit’s left side corner post and left side panel from the unit to allow for easy economizer installation. (See Fig 14.)

 NOTE: The unit’s left side panel has a duct opening in it, but this panel / duct opening will not be used in this application and can be discarded.

 Unit’s Left Side Panel with Duct Opening
 Left Front Corner Post

 Fig. 14 - Remove Unit Corner Post and Side Panel

5. Install economizer, as shown in Fig. 2, into the return air section of the unit. Be careful not to pinch the wires during installation. Bottom of economizer will rest on the base of the unit. (See Fig. 5.)
6. Reinstall the left side corner post on to the unit. Note the corner post will sit behind the economizer flange. (See Fig. 3.) Screw through the corner post and through the economizer. (See Fig. 3 and 4.)
7. Insert provided screw through the bottom left rear of the economizer and into the unit base. (See Fig. 5.) Install the new (provided) left side panel - without the duct opening on the unit.
8. Before the economizer is secured in place on the right hand side, remove and save the 12-pin jumper plug from the unit wiring harness. Insert the EconoMi$er IV plug into the unit wiring harness plug. (See Fig 6.)

 NOTE: The 12-pin jumper plug should be saved for future use in the event that the EconoMi$er IV is removed from the unit. The jumper plug is not needed as long as the EconoMi$er IV is installed.

9. Remove the indoor-fan motor access panel. (See Fig. 1.)
10. Install the supply air temperature sensor (SAT). The sensor looks like an eyelet terminal with 2 attached wires, and is shipped in the economizer hardware bag. The sensor is located on the “crimped” end and is sealed for moisture. Mount the SAT to the indoor blower housing. (See Fig. 7.) Use the provided screw to secure in place. Attach the PINK and VIOLET wires in the unit to the sensor.
11. Replace the indoor-fan motor access panel.
12. Install the (provided) bottom panel with the horizontal return duct opening on the unit. (See Fig. 15.) Screw panel in place.
13. Install the upper end economizer panel in place over the economizer’s outside air damper, and above the bottom panel. Screw panel in place and screw panel into economizer in 2 places. (See Fig. 16.)
14. Assemble the outside air hood per Fig. 10 and 11.
 a. Install four hood angles to the upper end panel using the screws provided.
 b. Apply seal strip to mating flanges on the side plates of the hood and the hood top.
 c. Secure the hood side plates to the panel using screws provided.
 d. On 44 inch chassis, remove screws across top cover. Attach hood top to hood side plates (on 44 inch chassis, flange will slide behind flange of top cover).
 e. On 44 inch chassis, reinstall the screws previously removed. On the 52 inch chassis, secure top flange using screws provided in kit.
 f. Install the four outdoor air screens by sliding them into the channel formed by the four angles installed previously. Make sure the screens extend across the entire length of the hood.

NOTE: Screens may be left out at this time to allow for EconoMi$er IV adjustments.

 g. Install the side filter supports using the screws provided.
 h. Install the side drip edge angles using the screws provided.
 i. Run a continuous length of seal strip across the hood covering the engagement hole in the lower hood.
 j. Install top diverter using screws provided.

15. Install the hood assembly on to the unit. Fig 11 and 12.

16. Through the outdoor air hood, review and adjust the EconoMi$er IV controller settings. See “Operation” section of this manual for details.
 a. The standard EconoMi$er IV controller has a factory setting of “C” for the outdoor air temperature changeover and 55°F (fixed) for the supply air temperature sensor. The outdoor air temperature setting can be adjusted at the controller.
 b. The low temperature compressor lockout switch setting can be adjusted at the controller.
 c. The minimum position for the outdoor air damper can be configured for specific job requirements at the controller.
 d. Settings for the optional return air temperature sensor, outdoor enthalpy sensor, indoor enthalpy sensor, power exhaust, and CO₂ sensor can be configured at the controller.

17. If barometric relief is required remove the relief damper and hinges from the (provided) bottom panel used on vertical applications. Reinstall the hinges and damper on the side of the field supplied return duct. (See Fig. 17.)

NOTE: A relief hood for the horizontal application can be ordered separately (part number CRBARHOD001A00) or can be field-supplied.

18. Install the hood screens and other approved EconoMi$er IV accessories.
CONFIGURATION

EconoMi$er IV Standard Sensors

Outdoor Air Temperature (OAT) Sensor
The outdoor air temperature sensor (HH57AC074) is a 10 to 20 mA device used to measure the outdoor-air temperature. The outdoor-air temperature is used to determine when the EconoMi$er IV can be used for free cooling. The sensor is factory-installed on the EconoMi$er IV in the outdoor airstream. (See Fig. 9.) The operating range of temperature measurement is 40°F to 100°F.

Supply Air Temperature (SAT) Sensor
The supply air temperature sensor is a 3K thermistor located at the inlet of the indoor fan. (See Fig. 9.) This sensor is field installed. The operating range of temperature measurement is 0°F to 158°F. See Table 5 for sensor temperature/resistance values.

The temperature sensor looks like an eyelet terminal with wires running to it. The sensor is located in the “crimp end” and is sealed from moisture.

<table>
<thead>
<tr>
<th>TEMPERATURE (F)</th>
<th>RESISTANCE (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>−58</td>
<td>200,250</td>
</tr>
<tr>
<td>−40</td>
<td>100,680</td>
</tr>
<tr>
<td>−22</td>
<td>53,010</td>
</tr>
<tr>
<td>−4</td>
<td>29,091</td>
</tr>
<tr>
<td>14</td>
<td>16,590</td>
</tr>
<tr>
<td>32</td>
<td>9,795</td>
</tr>
<tr>
<td>50</td>
<td>5,970</td>
</tr>
<tr>
<td>68</td>
<td>3,747</td>
</tr>
<tr>
<td>77</td>
<td>3,000</td>
</tr>
<tr>
<td>86</td>
<td>2,416</td>
</tr>
<tr>
<td>104</td>
<td>1,597</td>
</tr>
<tr>
<td>122</td>
<td>1,080</td>
</tr>
<tr>
<td>140</td>
<td>746</td>
</tr>
<tr>
<td>158</td>
<td>525</td>
</tr>
<tr>
<td>176</td>
<td>376</td>
</tr>
<tr>
<td>185</td>
<td>321</td>
</tr>
<tr>
<td>194</td>
<td>274</td>
</tr>
<tr>
<td>212</td>
<td>203</td>
</tr>
<tr>
<td>230</td>
<td>153</td>
</tr>
<tr>
<td>248</td>
<td>116</td>
</tr>
<tr>
<td>257</td>
<td>102</td>
</tr>
<tr>
<td>266</td>
<td>89</td>
</tr>
<tr>
<td>284</td>
<td>70</td>
</tr>
<tr>
<td>302</td>
<td>55</td>
</tr>
</tbody>
</table>

Low Temperature Compressor Lockout Switch
The EconoMi$er IV is equipped with a low ambient temperature lockout switch located in the outdoor airstream which is used to lock out the compressors below a 42°F ambient temperature. (See Fig. 9.)

EconoMi$er IV Control Modes
Determine the EconoMi$er IV control mode before set up of the control. Some modes of operation may require different sensors. (See Table 1.) The EconoMi$er IV is supplied from the factory with a supply air temperature sensor, a low temperature compressor lockout switch, and an outdoor air temperature sensor. This allows for operation of the EconoMi$er IV with outdoor air dry bulb changeover control. Additional accessories can be added to allow for different types of changeover control and operation of the EconoMi$er IV and unit.

Outdoor Dry Bulb Changeover
The standard controller is shipped from the factory configured for outdoor dry bulb changeover control. The outdoor air and supply air temperature sensors are included as standard. For this control mode, the outdoor temperature is compared to an adjustable set point selected on the control. If the outdoor-air temperature is above the set point, the EconoMi$er IV will adjust the outdoor air damper to minimum position. If the outdoor-air temperature is below the set point, the position of the outdoor-air dampers will be controlled to provide free cooling using outdoor air. When in this mode, the LED next to the free cooling set point potentiometer will be on. The changeover temperature set point controlled by the free cooling set point potentiometer located on the control. (See Fig 18.) The scale on the potentiometer is A, B, C, and D. See Fig 19 for the corresponding temperature changeover values.

Fig. 18 - EconoMi$er IV Controller Potentiometer and LED Locations
Fig. 19 - Outdoor Air Temperature Changeover Setpoints

Differential Dry Bulb Control
For differential dry bulb control the standard outdoor dry bulb sensor is used in conjunction with an additional accessory return air sensor (part number CRTEMPSN002A00). The accessory sensor must be mounted in the return airstream. (See Fig. 20.)

In this mode of operation, the outdoor-air temperature is compared to the return-air temperature and the lower temperature airstream is used for cooling. When using this mode of changeover control, turn the free cooling/enthalpy set point potentiometer fully clockwise to the D setting. (See Fig. 18.)

Outdoor Enthalpy Changeover
For enthalpy control, accessory enthalpy sensor (part number HH57AC078) is required. Replace the standard outdoor dry bulb temperature sensor with the accessory enthalpy sensor in the same mounting location. (See Fig. 9.) When the outdoor air enthalpy rises above the outdoor enthalpy changeover set point, the outdoor-air damper moves to its minimum position.

The outdoor enthalpy changeover set point is set with the outdoor enthalpy set point potentiometer on the EconoMiSer IV controller. The set point are A, B, C and D. (See Fig 21.) The factory-installed 620-ohm jumper must be in place across terminals SR and SR+ on the EconoMiSer IV controller. (See Fig 13.)

Differential Enthalpy Control
For differential enthalpy control, the EconoMiSer IV controller uses two enthalpy sensors (HH57AC078 and CRENTDIF004A00), one in the outside air and one in the return airstream. The EconoMiSer IV controller compares the outdoor air enthalpy to the return air enthalpy to determine EconoMiSer IV use. The controller selects the lower enthalpy air (return or outdoor) for cooling. For example, when the outdoor air has a lower enthalpy than the return air and is below the set point, the EconoMiSer IV opens to bring in outdoor air for free cooling.

Replace the standard outside air dry bulb temperature sensor with the accessory enthalpy sensor in the same mounting location. (See Fig 9.) Mount the return air enthalpy sensor in the return air duct. (See Fig 20.) When using this mode of changeover control, turn the enthalpy set point potentiometer fully clockwise to the D setting.

Indoor Air Quality (IAQ) Sensor Input
The IAQ input can be used for demand control ventilation control based on the level of CO₂ measured in the space or return air duct.

Mount the accessory IAQ sensor according to manufacturer specifications. The IAQ sensor should be wired to the A0 and AQ1 terminals of the controller. Adjust the DCV voltage output of the indoor air quality sensor at the user-determined set point. (See Fig 23.)

If a separate field-supplied transformer is used to power the IAQ sensor, the sensor must not be grounded or the EconoMiSer IV control board will be damaged.

Fig. 20 - Return Air Temperature or Enthalpy Sensor Mounting Location
Fig. 21 - Enthalpy Changeover Setpoints

Fig. 22 - EconoMizer IV Controller

Fig. 23 - CO$_2$ Sensor Maximum Range Setting
Exhaust Set Point Adjustment

The exhaust set point will determine when the exhaust fan runs based on damper position (if accessory power exhaust is installed). The set point is modified with the Exhaust Fan Set Point (EXH SET) potentiometer. (See Fig. 18.) The set point represents the damper position above which the exhaust fans will be turned on. When there is a call for exhaust, the EconoMi$er IV controller provides a 45 ± 15 second delay before exhaust fan activation to allow the dampers to open. This delay allows the damper to reach the appropriate position to avoid unnecessary fan overload.

Minimum Position Control

There is a minimum damper position potentiometer on the EconoMi$er IV controller. (See Fig. 18.) The minimum damper position maintains the minimum airflow into the building during the occupied period.

When using demand ventilation, the minimum damper position represents the minimum ventilation position for VOC (volatile organic compound) ventilation requirements. The maximum demand ventilation position is used for fully occupied ventilation.

When demand ventilation control is not being used, the minimum position potentiometer should be used to set the occupied ventilation position. The maximum demand ventilation position should be turned fully clockwise.

Adjust the minimum position potentiometer to allow the minimum amount of outdoor air, as required by local codes, to enter the building. Make minimum position adjustments with at least 10°F temperature difference between the outdoor and return-air temperatures.

To determine the minimum position setting perform the following procedure:

1. Calculate the appropriate mixed air temperature using the following formula:
 \[T_M = T_O \times \frac{OA}{100} + (T_R \times \frac{RA}{100}) \]
 where:
 - \(T_O \) = Outdoor-Air Temperature
 - \(OA \) = Percent of Outdoor Air
 - \(T_R \) = Return-Air Temperature
 - \(RA \) = Percent of Return Air
 - \(T_M \) = Mixed-Air Temperature

2. Disconnect the supply air sensor from terminals T and T1.

3. Ensure that the factory-installed jumper is in place across terminals P and P1. If remote damper positioning is being used, make sure that the terminals are wired according to Fig. 13 and that the minimum position potentiometer is turned fully clockwise.

5. Carefully adjust the minimum position potentiometer until the measured mixed-air temperature matches the calculated value.

6. Reconnect the supply air sensor to terminals T and T1.

Remote control of the EconoMi$er IV damper is desirable when requiring additional temporary ventilation. If a field-supplied remote potentiometer (Honeywell part number S963B1128) is wired to the EconoMi$er IV controller, the minimum position of the damper can be controlled from a remote location.

To control the minimum damper position remotely remove the factory-installed jumper on the P and P1 terminals on the EconoMi$er IV controller. Wire the field-supplied potentiometer to the P and P1 terminals on the EconoMi$er IV controller. (See Fig. 13.)

Damper Movement

Damper movement from full open to full closed (or vice versa) takes 2-1/2 minutes.

Thermostats

The EconoMi$er IV control works with conventional thermostats that have a Y1 (cool stage 1), Y2 (cool stage 2), W1 (heat stage 1), W2 (heat stage 2), and G (fan). The EconoMi$er IV control does not support space temperature sensors. Connections are made at the thermostat terminal connection board located in the main control box.

Occupancy Control

The factory default configuration for the economizer control is occupied mode. Occupied status is provided by the black wire from Pin 3. When unoccupied mode is desired, install a field-supplied time clock function in place of the jumper between TR and N. (See Fig. 13.) When the time clock contacts are closed, the EconoMi$er IV control will be in occupied mode. When the time clock contacts are open (removing the 24-v signal from terminal N), the economizer will be in unoccupied mode.

Demand Control Ventilation

When using the EconoMi$er IV for demand controlled ventilation, there are some equipment selection criteria which should be considered. When selecting the heat capacity and cool capacity of the equipment, the maximum ventilation rate must be evaluated for design conditions. The maximum damper position must be calculated to provide the desired fresh air.

Typically the maximum ventilation rate will be about 5 to 10% more than the typical cfm required per person, using normal outside air design criteria.

An exponential anticipatory strategy should be taken with the following conditions: a zone with a large area, varied occupancy, and equipment that cannot exceed the required ventilation rate design conditions. Exceeding the required ventilation rate means the equipment can condition air at maximum ventilation rate design conditions. Exceeding the required ventilation rate for maximum occupancy. An exponential-anticipatory strategy will cause the fresh air supplied to increase as the room CO₂ level increases even though the CO₂ set point has not been reached. By the time the CO₂ level reaches the set point, the damper will be at maximum ventilation and should maintain the set point.
In order to have the CO₂ sensor control the economizer damper in this manner, first determine the damper voltage output for minimum or base ventilation. Base ventilation is the ventilation required to remove contaminants during unoccupied periods. The following equation may be used to determine the percent of outside-air entering the building for a given damper position. For best results there should be at least a 10 degree difference in outside and return-air temperatures.

\[T_O \times \frac{O A}{100} + (T_R \times \frac{R A}{100}) = T_M \]

\[T_O = \text{Outdoor-Air Temperature} \]
\[O A = \text{Percent of Outdoor Air} \]
\[T_R = \text{Return-Air Temperature} \]
\[R A = \text{Percent of Return Air} \]
\[T_M = \text{Mixed-Air Temperature} \]

Once base ventilation has been determined, set the minimum damper position potentiometer to the correct position.

The same equation can be used to determine the occupied or maximum ventilation rate to the building. For example, an output of 3.6 volts to the actuator provides a base ventilation rate of 5% and an output of 6.7 volts provides the maximum ventilation rat of 20% (or base plus 15 cfm per person). Use Fig. 23 to determine the maximum setting of the CO₂ sensor. For example, a 1100 ppm set point relates to a 15 cfm per person design. Use the 1100 ppm curve on Fig. 23 to find the point when the CO₂ sensor output will be 6.7 volts. Line up the point on the graph with the left side of the chart to determine that the range configuration for the CO₂ sensor should be 1800 ppm. The EconoMi$er IV controller will output the 6.7 volts from the CO₂ sensor to the actuator when the CO₂ concentration in the space is at 1100 ppm. The DCV set point may be left at 2 volts since the CO₂ sensor voltage will be ignored by the EconoMi$er IV controller until it rises above the 3.6 volt setting of the minimum position potentiometer.

Once the fully occupied damper position has been determined, set the maximum damper demand control ventilation potentiometer to this position as this can result in over-ventilation to the space and potential high-humidity levels.

CO₂ Sensor Configuration

The CO₂ sensor has preset standard voltage setting that can be selected anytime after the sensor is powered up. (See Table 4.)

Use setting 1 or 2 for this equipment. (See Table 4.)

1. Press Clear and Mode buttons. Hold at least 5 seconds until the sensor enters the Edit mode.
2. Press Mode twice. The STDSET Menu will appear.
3. Use the Up/Down button to select the preset number. (See Table 4.)
4. Press Enter to lock in the selection.
5. Press Mode to exit and resume normal operation.

The custom settings of the CO₂ sensor can be changed anytime after the sensor is energized. Follow the steps below to change the non-standard settings:

1. Press Clear and Mode buttons. Hold at least 5 seconds until the sensor enter the Edit mode.
2. Press Mode twice. The STDSET Menu will appear.
3. Use the Up/Down button to toggle to the NONSTD menu and press Enter.
4. Use the Up/Down button to toggle through each of the nine variables, starting with Altitude, until the desired setting is reached.
5. Press Mode to move through the variables.
6. Press Enter to lock in the selection, then press Mode to continue to the next variable.

Dehumidification of Fresh Air With DCV Control

Information from ASHRAE indicates that the largest humidity load on any zone is the fresh air introduced. For some application, an energy recovery unit can be added to reduce the moisture content of the fresh air being brought into the building when the enthalpy is high. In most cases, the normal heating and cooling processes are more than adequate to remove the humidity loads for most commercial applications.

If normal rooftop heating and cooling operation is not adequate for the outdoor humidity level, and energy recovery unit and/or a dehumidification option should be considered.

OPERATION

Sequence of Operation

When free cooling is not available, the compressors will be controlled by the zone thermostat. When free cooling is available, the outdoor-air damper is modulated by the EconoMi$er IV control to provide a 50° to 55°F supply-air temperature into the zone. As the supply-air temperature fluctuates above 55° or below 50°F, the dampers will be modulated (open or close) to bring the supply-air temperature back within the set points.

For EconoMi$er IV operation, there must be a thermostat call for the fan (G). This will move the damper to its minimum position during the occupied mode.

Above 50°F supply-air temperature, the dampers will modulate from 100% open to the minimum open position. From 50°F to 45°F supply-air temperature, the dampers will maintain at the minimum open position. Below 45°F, the dampers will be completely shut. As the supply-air temperature rises, the dampers will come back open to the minimum open position once the supply-air temperature rises to 48°F.

If optional power exhaust is installed, as the outdoor-air damper opens and closes, the power exhaust fans will be energized and deenergized.
Table 4 – CO2 Sensor Standard Settings

<table>
<thead>
<tr>
<th>SETTING</th>
<th>EQUIPMENT</th>
<th>OUTPUT</th>
<th>VENTILATION RATE (cfm/Person)</th>
<th>ANALOG OUTPUT</th>
<th>CO2 CONTROL RANGE (ppm)</th>
<th>OPTIONAL RELAY SETPOINT (ppm)</th>
<th>RELAY HYSTERESIS (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Interface w/Standard Building Control System</td>
<td>Proportional</td>
<td>Any</td>
<td>0–10V 4–20 mA</td>
<td>0–2000</td>
<td>1000</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>Proportional</td>
<td>Any</td>
<td>2–10V 4–20 mA</td>
<td>0–2000</td>
<td>1000</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Exponential</td>
<td>Any</td>
<td>0–10V 4–20 mA</td>
<td>0–2000</td>
<td>1100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Proportional</td>
<td>15</td>
<td>0–10V 4–20 mA</td>
<td>0–1100</td>
<td>1100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Proportional</td>
<td>20</td>
<td>0–10V 4–20 mA</td>
<td>0–900</td>
<td>900</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Exponential</td>
<td>15</td>
<td>0–10V 4–20 mA</td>
<td>0–1100</td>
<td>1100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Exponential</td>
<td>20</td>
<td>0–10V 4–20 mA</td>
<td>0–900</td>
<td>900</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Proportional</td>
<td>—</td>
<td>0–10V 4–20 mA</td>
<td>0–9999</td>
<td>5000</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Parking/Air Intakes/Loading Docks</td>
<td>Proportional</td>
<td>—</td>
<td>0–10V 4–20 mA</td>
<td>0–2000</td>
<td>700</td>
<td>50</td>
</tr>
</tbody>
</table>

LEGEND

ppm — Parts Per Million

If field-installed accessory CO2 sensors are connected to the EconoMi$er IV control, a demand controlled ventilation strategy will begin to operate. As the CO2 level in the zone increases above the CO2 set point, the minimum position of the damper will be increased proportionally. As the CO2 level decreases because of the increase in fresh air, the outdoor-air damper will be proportionally closed. Damper position will follow the higher demand condition from DCV mode or free cooling mode.

Damper movement from full closed to full open (or vice versa) will take between 1-1/2 and 2-1/2 minutes. If free cooling can be used as determined from the appropriate changeover command (switch, dry bulb, enthalpy curve, differential dry bulb, or differential enthalpy), a call for cooling (Y1 closes at the thermostat) will cause the control to modulate the dampers open to maintain the supply air temperature set point at 50°F to 55°F.

As the supply air temperature drops below the set point range of 50°F to 55°F, the control will modulate the outdoor-air dampers closed to maintain the proper supply-air temperature.

TROUBLESHOOTING

See Table 9 for EconoMi$er IV logic.

EconoMi$er IV Preparation

This procedure is used to prepare the EconoMi$er IV for troubleshooting. No troubleshooting or testing is done by performing the following procedure.

NOTE: This procedure requires a 9-v battery, 1.2 kilo-ohm resistor, and a 5.6 kilo-ohm resistor which are not supplied with the EconoMi$er IV.

IMPORTANT: Be sure to record the positions of all potentiometers before starting troubleshooting.

1. Disconnect power at TR and TR1. All LEDs should be off. Exhaust fan contact should be open.
2. Disconnect device at P and P1.
4. Disconnect wires at T and T1. Place 5.6 kilo-ohm resistor across T and T1.
5. Jumper TR to 1.
6. Jumper TR to N.
7. If connected, remove sensor from terminals SO and +. Connect 1.2 kilo-ohm 4074EJM checkout resistor across terminals SO and +.
9. Set minimum position, DCV set point, and exhaust potentiometers fully CCW (counterclockwise).
10. Set DCV maximum position potentiometer fully CW (clockwise).
11. Set enthalpy potentiometer to D.
12. Apply power (24 vac) to terminals TR and TR1.

Differential Enthalpy

To check differential enthalpy:

1. Make sure EconoMi$er IV preparation procedure has been performed.
2. Place 620-ohm resistor across SO and +.
3. Place 1.2 kilo-ohm resistor across SR and +. The Free Cool LED should be lit.
4. Remove 620-ohm resistor across SO and +. The Free Cool LED should turn off.
5. Return EconoMi$er IV settings and wiring to normal after completing troubleshooting.
Single Enthalpy
To check single enthalpy:
1. Make sure the EconoMi$er IV preparation procedure has been performed.
2. Set the enthalpy potentiometer to A (fully CCW). The Free Cool LED should be lit.
3. Set the enthalpy potentiometer to D (fully CW). The Free Cool LED should turn off.
4. Return EconoMi$er IV settings and wiring to normal after completing troubleshooting.

DCV (Demand Control Ventilation) and Power Exhaust
1. Make sure EconoMi$er IV preparation procedure has been performed.
2. Ensure terminals AQ and AQ1 are open. The LED for both DCV and Exhaust should be off. The actuator should be fully closed.
3. Connect a 9-v battery to AQ (positive node) and AQ1 (negative node). The LED for both DCV and Exhaust should turn on. The actuator should drive to between 90 and 95% open.
4. Turn the Exhaust potentiometer CW until the Exhaust LED turns off. The LED should turn off when the potentiometer is approximately 90%. The actuator should remain in position.
5. Turn the DCV set point potentiometer CW until the DCV LED turns off. The DCV LED should turn off when the potentiometer is approximately 9-v. The actuator should drive fully closed.
6. Turn the DCV and Exhaust potentiometers CCW until the Exhaust LED turns on. The exhaust contact will close 30 to 120 seconds after the Exhaust LED turns on.
7. Return EconoMi$er IV settings and wiring to normal after completing troubleshooting.

ECV Minimum and Maximum Position
To check the DCV minimum and maximum position:
1. Make sure EconoMi$er IV preparation procedure has been performed.
2. Connect a 9-v battery to AQ (positive node) and AQ1 (negative node). The DCV LED should turn on. The actuator should drive to between 90 and 95% open.
3. Turn the DCV Maximum Position potentiometer to midpoint. The actuator should drive to between 20 and 80% open.
4. Turn the DCV Maximum Position potentiometer to fully CCW. The actuator should drive fully closed.
5. Turn the Minimum Position potentiometer to midpoint. The actuator should drive to between 20 and 80% open.
6. Turn the Minimum Position potentiometer fully CW. The actuator should drive fully open.
7. Remove the jumper from TR and N. The actuator should drive fully closed.
8. Return EconoMi$er IV settings and wiring to normal after completing troubleshooting.

Supply-Air Input
To check supply-air input:
1. Make sure EconoMi$er IV preparation procedure has been performed.
2. Set the enthalpy potentiometer to A. The Free Cool LED turns on. The actuator should drive to between 20 and 80% open.
3. Remove the 5.6 kilo-ohm resistor and jumper T to T1. The actuator should drive fully open.
4. Remove the jumper across T and T1. The actuator should drive fully closed.
5. Return EconoMi$er IV settings and wiring to normal after completing troubleshooting.

EconoMi$er IV Troubleshooting Completion
This procedure is used to return the EconoMi$er IV to operation. No troubleshooting or testing is done by performing the following procedure:
1. Disconnect power at TR and TR1.
2. Set enthalpy potentiometer to previous setting.
3. Set DCV maximum position potentiometer to previous setting.
4. Set minimum position, DCV set point, and exhaust potentiometers to previous settings.
5. Remove 620-ohm resistor from terminals S_R and +.
6. Remove 1.2 kilo-ohm checkout resistor from terminals S_Q and +. If used, reconnect sensor from terminals S_Q and +.
7. Remove jumper from TR to N.
8. Remove jumper from TR to T1.
10. Remove jumper from TR and TR1. Reconnect device at TR and TR1.
11. Apply power (24 vac) to terminals TR and TR1.
Table 5 – EconoMi$er IV Input/Output Logic

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
<th>Stage 1</th>
<th>Stage 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand Control Ventilation (DCV)</td>
<td>Compressor N Terminal†</td>
<td>Occupied</td>
<td>Unoccupied</td>
</tr>
<tr>
<td>Outdoor</td>
<td>Return</td>
<td>Y1</td>
<td>Y2</td>
</tr>
<tr>
<td>Below set (DCV LED Off)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High (Free Cooling LED Off)</td>
<td>Low</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>Low (Free Cooling LED On)</td>
<td>High</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>Above set (DCV LED On)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High (Free Cooling LED Off)</td>
<td>Low</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>Low (Free Cooling LED On)</td>
<td>High</td>
<td>On</td>
<td>On</td>
</tr>
</tbody>
</table>

* For single enthalpy control, the module compares outdoor enthalpy to the ABCD set point.
† Power at B terminal determines Occupied/Unoccupied setting: 24 vac (Occupied), no power (Unoccupied).
** Modulation is based on the supply–air sensor signal.
†† Modulation is based on the DCV signal.
*** Modulation is based on the greater of DCV and supply–air sensor signals, between minimum position and either maximum position (DCV) or fully open (supply–air signal).
††† Modulation is based on the greater of DCV and supply–air sensor signals, between closed and either maximum position (DCV) or fully open (supply–air signal).