GUIDE SPECIFICATIONS - 50HC-D17-28

Note about this specification:
These specifications are written in “Masterformat” as published by the Construction Specification Institute. Please feel free to copy this specification directly into your building spec.

Cooling Only/Electric Heat Packaged Rooftop HVAC Guide Specifications

Size Range: 15 to 25 Nominal Tons

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 06 80</td>
<td>Schedules for Decentralized HVAC Equipment</td>
</tr>
<tr>
<td>23 06 80.13</td>
<td>Decentralized Unitary HVAC Equipment Schedule</td>
</tr>
<tr>
<td>23 06 80.13.A.</td>
<td>Rooftop unit schedule</td>
</tr>
<tr>
<td></td>
<td>1. Schedule is per the project specification requirements.</td>
</tr>
<tr>
<td>23 07 16</td>
<td>HVAC Equipment Insulation</td>
</tr>
<tr>
<td>23 07 16.13</td>
<td>Decentralized, Rooftop Units:</td>
</tr>
<tr>
<td>23 07 16.13.A.</td>
<td>Evaporator fan compartment:</td>
</tr>
<tr>
<td></td>
<td>1. Interior cabinet surfaces shall be insulated with a minimum 1/2-in. thick,</td>
</tr>
<tr>
<td></td>
<td>minimum 1 1/2 lb density, flexible fiberglass insulation bonded with a</td>
</tr>
<tr>
<td></td>
<td>phenolic binder, neoprene coated on the air side.</td>
</tr>
<tr>
<td></td>
<td>2. Insulation and adhesive shall meet NFPA 90A requirements for flame spread</td>
</tr>
<tr>
<td></td>
<td>and smoke generation.</td>
</tr>
<tr>
<td>23 07 16.13.B.</td>
<td>Electric heat compartment:</td>
</tr>
<tr>
<td></td>
<td>1. Aluminum foil-faced fiberglass insulation shall be used.</td>
</tr>
<tr>
<td></td>
<td>2. Insulation and adhesive shall meet NFPA 90A requirements for flame spread</td>
</tr>
<tr>
<td></td>
<td>and smoke generation.</td>
</tr>
<tr>
<td>23 09 13</td>
<td>Instrumentation and Control Devices for HVAC</td>
</tr>
<tr>
<td>23 09 13.23</td>
<td>Sensors and Transmitters</td>
</tr>
<tr>
<td>23 09 13.23.A.</td>
<td>Thermostats</td>
</tr>
<tr>
<td></td>
<td>1. Thermostat must</td>
</tr>
<tr>
<td></td>
<td>a. energize both “W” and “G” when calling for heat.</td>
</tr>
<tr>
<td></td>
<td>b. have capability to energize 2 different stages of cooling, and 2 different</td>
</tr>
<tr>
<td></td>
<td>stages of heating.</td>
</tr>
<tr>
<td></td>
<td>c. include capability for occupancy scheduling.</td>
</tr>
<tr>
<td>23 09 23</td>
<td>Direct-digital Control system for HVAC</td>
</tr>
<tr>
<td>23 09 23.13</td>
<td>Decentralized, Rooftop Units:</td>
</tr>
<tr>
<td>23 09 23.13.A.</td>
<td>Controls and Safeties</td>
</tr>
<tr>
<td></td>
<td>1. Unit ComfortLink Controls:</td>
</tr>
<tr>
<td></td>
<td>a. Scrolling Marquee display.</td>
</tr>
<tr>
<td></td>
<td>b. CCN (Carrier Comfort Network™) capable.</td>
</tr>
<tr>
<td></td>
<td>c. Unit control with standard suction pressure transducers and condensing</td>
</tr>
<tr>
<td></td>
<td>temperature thermistors.</td>
</tr>
<tr>
<td></td>
<td>d. Shall provide a 5°F temperature difference between cooling and heating</td>
</tr>
<tr>
<td></td>
<td>set points to meet ASHRAE 90.1 Energy Standard.</td>
</tr>
<tr>
<td></td>
<td>e. Shall provide and display a current alarm list and an alarm history list.</td>
</tr>
<tr>
<td></td>
<td>f. Automatic compressor redundancy on units without Humidi-MiZer system.</td>
</tr>
<tr>
<td></td>
<td>g. Service run test capability.</td>
</tr>
<tr>
<td></td>
<td>h. Shall accept input from a CO₂ sensor (both indoor and outdoor).</td>
</tr>
<tr>
<td></td>
<td>i. Configurable alarm light shall be provided which activates when certain</td>
</tr>
<tr>
<td></td>
<td>types of alarms occur.</td>
</tr>
<tr>
<td></td>
<td>j. Compressor minimum run time (3 minutes) and minimum off time (5 minutes)</td>
</tr>
<tr>
<td></td>
<td>are provided.</td>
</tr>
<tr>
<td></td>
<td>k. Service diagnostic mode.</td>
</tr>
<tr>
<td></td>
<td>l. Economizer control (optional).</td>
</tr>
<tr>
<td></td>
<td>m. Multiple capacity stages.</td>
</tr>
<tr>
<td></td>
<td>n. Unit shall be complete with self-contained low-voltage control circuit.</td>
</tr>
<tr>
<td></td>
<td>o. Unit shall have 0°F low ambient cooling operation.</td>
</tr>
<tr>
<td>2. Safeties:</td>
<td>a. Unit shall incorporate a solid-state compressor lockout that provides</td>
</tr>
<tr>
<td></td>
<td>optional reset capability at the space thermostat should any of the</td>
</tr>
<tr>
<td></td>
<td>following safety devices trip and shut off compressor:</td>
</tr>
<tr>
<td></td>
<td>(1.) Compressor lockout protection provided for either internal or</td>
</tr>
<tr>
<td></td>
<td>external overload.</td>
</tr>
</tbody>
</table>
(2.) Low-pressure protection.
(3.) Freeze protection (evaporator coil).
(4.) High-pressure protection (high pressure switch or internal).
(5.) Compressor reverse rotation protection (ComfortLink units only).
(6.) Loss of charge protection.
(7.) Start assist on singe-phase units.

b. Supply-air sensor shall be located in the unit and detect both heating and cooling operation.
c. Induced draft heating section shall be provided with the following minimum protections:
 (1.) High-temperature limit switch.
 (2.) Induced-draft motor speed sensor.
 (3.) Flame rollout switch.
 (4.) Flame proving controls.
 (5.) Redundant gas valve.

23 09 23.13.B. N/A

23 09 33 Electric and Electronic Control System for HVAC

23 09 33.13 Decentralized, Rooftop Units:
23 09 33.13.A. General:
1. Shall be complete with self-contained low-voltage control circuit protected by a resettable circuit breaker on the 24-v transformer side. Transformer shall have 75VA capability.
2. Shall utilize color-coded wiring.
3. Shall include a central control terminal board to conveniently and safely provide connection points for vital control functions such as: smoke detectors, phase monitor, economizer, thermostat, DDC control options, and low and high pressure switches.
4. Unit shall include a minimum of one 8-pin screw terminal connection board for connection of control wiring.

23 09 33.23.B. Safeties:
1. Compressor over-temperature, over current.
2. Low-pressure switch.
a. Units shall have different sized connectors for the circuit 1 and circuit 2 low and high pressure switches. They shall physically prevent the cross-wiring of the safety switches between circuits 1 and 2.
b. Low pressure switch shall use different color wire than the high pressure switch. The purpose is to assist the installer and service technician to correctly wire and or troubleshoot the rooftop unit.
3. High-pressure switch.
a. Units compressors shall have different sized connectors for the circuit 1 and circuit 2 low and high pressure switches. They shall physically prevent the cross-wiring of the safety switches between circuits 1 and 2.
b. High pressure switch shall use different color wire than the low pressure switch. The purpose is to assist the installer and service technician to correctly wire and or troubleshoot the rooftop unit.

23 09 93 Sequence of Operations for HVAC Controls
23 09 93.13 Decentralized, Rooftop Units:
23 09 93.13 INSERT SEQUENCE OF OPERATION

23 40 13 Panel Air Filters
23 40 13.13 Decentralized, Rooftop Units:
23 40 13.13.A. Standard filter section
1. Shall consist of factory-installed, low velocity, throwaway 2-in. thick fiberglass filters of commercially available sizes.
2. Unit shall use only one filter size. Multiple sizes are not acceptable.
3. Filters shall be accessible through a dedicated, weather tight panel.
4. 4-in filter capabilities shall be capable with pre engineered and approved Carrier filter track field installed accessory. This kit requires field furnished filters.

23 81 19 Self-Contained Air Conditioners
23 81 19.13 Medium-Capacity Self-Contained Air Conditioners (50HC*D17-28)
23 81 19.13.A. General
1. Outdoor, rooftop mounted, electrically controlled, heating and cooling unit utilizing a(n) hermetic scroll compressor(s) for cooling duty and gas combustion for heating duty.
2. Factory assembled, single-piece heating and cooling rooftop unit. Contained within the unit enclosure shall be all factory wiring, piping, controls, and special features required prior to field start-up.
3. Unit shall use environmentally safe, Puron refrigerant.
4. Unit shall be installed in accordance with the manufacturer’s instructions.
5. Unit must be selected and installed in compliance with local, state, and federal codes.

23 81 19.13.B. Quality Assurance
1. Unit meets ASHRAE 90.1 minimum efficiency requirements.
2. 3 phase units are Energy Star qualified where sizes are required.
3. Unit shall be rated in accordance with AHRI Standard 340/360.
4. Unit shall be designed to conform to ASHRAE 15.
5. Unit shall be ETL-tested and certified in accordance with ANSI Z21.47 Standards and ETL-listed and certified under Canadian standards as a total package for safety requirements.
6. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
7. Unit casing shall be capable of withstanding 500-hour salt spray exposure per ASTM B117 (scribed specimen).
8. Unit casing shall be capable of withstanding Federal Test Method Standard No. 141 (Method 6061) 5000-hour salt spray.
9. Unit shall be designed and manufactured in accordance with ISO 9001.
10. Roof curb shall be designed to conform to NRCA Standards.
11. Unit shall be subjected to a completely automated run test on the assembly line. The data for each unit will be stored at the factory, and must be available upon request.
12. Unit shall be designed in accordance with ETL Standard 1995, including tested to withstand rain.
13. Unit shall be constructed to prevent intrusion of snow and tested to prevent snow intrusion into the control box up to 40 mph.
14. Unit shake tested to assurance level 1, ASTM D4169 to ensure shipping reliability.

23 81 19.13.C. Delivery, Storage, and Handling
1. Unit shall be stored and handled per manufacturer’s recommendations.
2. Lifted by crane requires either shipping top panel or spreader bars.
3. Unit shall only be stored or positioned in the upright position.

23 81 19.13.D. Project Conditions
1. As specified in the contract.

23 81 19.13.E. Project Conditions
1. As specified in the contract.

23 81 19.13.F. Operating Characteristics
1. Unit shall be capable of starting and running at 125°F (52°C) ambient outdoor temperature, meeting maximum load criteria of AHRI Standard 340/360 at 10% voltage.
2. Compressor with standard controls shall be capable of operation from 35°F (2°C), ambient outdoor temperatures. Accessory kits are necessary if mechanically cooling at ambient temperatures below 35°F (2°C).
3. Unit shall discharge supply air vertically as shown on contract drawings.
4. Unit shall be factory configured and ordered for vertical supply & return configurations.
5. Unit shall be factory furnished in vertical configurations.
6. Unit shall be capable of mixed operation: vertical supply with horizontal return or horizontal supply with vertical return.

23 81 19.13.G. Electrical Requirements
1. Main power supply voltage, phase, and frequency must match those required by the manufacturer.

23 81 19.13.H. Unit Cabinet
1. Unit cabinet shall be constructed of galvanized steel, and shall be bonderized and coated with a pre-painted baked enamel finish on all externally exposed surfaces.
2. Unit cabinet exterior paint shall be: film thickness, (dry) 0.003 inches minimum, gloss (per ASTM D523, 60°F): 60, Hardness: H-2H Pencil hardness.
3. Evaporator fan compartment interior cabinet insulation shall conform to AHRI Standards 340/360 minimum exterior sweat criteria. Interior surfaces shall be insulated with a minimum 1/2-in. thick, 1 lb density, flexible fiberglass insulation, neoprene coated on the air side. Aluminum foil-faced fiberglass insulation shall be used in the heat compartment.
4. Base of unit shall have a minimum of four locations for factory thru-the-base electrical connections. Connections shall be internal to the cabinet to protect from environmental issues.

5. Base Rail
 a. Unit shall have base rails on a minimum of 2 sides.
 b. Holes shall be provided in the base rails for rigging shackles to facilitate maneuvering and overhead rigging.
 c. Holes shall be provided in the base rail for moving the rooftop by fork truck.
 d. Base rail shall be a minimum of 16 gauge thickness.

6. Condensate pan and connections:
 a. Shall be a sloped condensate drain pan made of a non-corrosive material.
 b. Shall comply with ASHRAE Standard 62.
 c. Shall use a 3/4-in -14 NPT drain connection at the end of the drain pan. Connection shall be made per manufacturer’s recommendations.

7. Top panel:
 a. Shall be a multi-piece top panel linked with water tight flanges and interlocking systems.

8. Electrical Connections
 a. All unit power wiring shall enter unit cabinet at a single, factory-prepared, knockout location.
 b. Thru-the-base capability
 1. Standard unit shall have a thru-the-base electrical location(s) using a raised, embossed portion of the unit basepan.
 2. Optional, factory-approved, water-tight connection method must be used for thru-the-base electrical connections.
 3. No basepan penetration, other than those authorized by the manufacturer, is permitted.

9. Component access panels (standard)
 a. Cabinet panels shall be easily removable for servicing.
 b. Unit shall have one factory installed, tool-less, removable, filter access panel.
 c. Panels covering control box and filters shall have molded composite handles while the blower access door shall have an integrated flange for easy removal.
 d. Handles shall be UV modified, composite permanently attached, and recessed into the panel.
 e. Screws on the vertical portion of all removable access panel shall engage into heat resistant, molded composite collars.
 f. Collars shall be removable and easily replaceable using manufacturer recommended parts.

23 81 19.13.I. N/A
23 81 19.13.J. Coils

1. Standard Aluminum Fin/Copper Tube Coils:
 a. Standard evaporator and condenser coils shall have aluminum lanced plate fins mechanically bonded to seamless internally grooved copper tubes with all joints brazed.
 b. Evaporator coils shall be leak tested to 150 psig, pressure tested to 450 psig, and qualified to UL 1995 burst test at 1775 psig.
 c. Condenser coils shall be leak tested to 150 psig, pressure tested to 650 psig, and qualified to UL 1995 burst test at 1980 psig.

2. Optional Pre-coated aluminum-fin condenser coils:
 a. Shall have a durable epoxy-phenolic coating to provide protection in mildly corrosive coastal environments.
 b. Coating shall be applied to the aluminum fin stock prior to the fin stamping process to create an inert barrier between the aluminum fin and copper tube.
 c. Epoxy-phenolic barrier shall minimize galvanic action between dissimilar metals.

3. Optional Copper-fin evaporator and condenser coils:
 a. Shall be constructed of copper fins mechanically bonded to copper tubes and copper tube sheets.
 b. Galvanized steel tube sheets shall not be acceptable.
 c. A polymer strip shall prevent coil assembly from contacting the sheet metal coil pan to minimize potential for galvanic corrosion between coil and pan.

4. Optional E-coated aluminum-fin evaporator and condenser coils:
 a. Shall have a flexible epoxy polymer coating uniformly applied to all coil surface areas without material bridging between fins.
 b. Coating process shall ensure complete coil encapsulation of tubes, fins and headers.
 c. Color shall be high gloss black with gloss per ASTM D523-89.
d. Uniform dry film thickness from 0.8 to 1.2 mil on all surface areas including fin edges.
e. Superior hardness characteristics of 2H per ASTM D3363-92A and cross-hatch adhesion of 4B-5B per ASTM D3359-93.
f. Impact resistance shall be up to 160 in.-lb (ASTM D2794-93).
g. Humidity and water immersion resistance shall be up to minimum 1000 and 250 hours respectively (ASTM D2247-92 and ASTM D870-92).
h. Corrosion durability shall be confirmed through testing to be no less than 1000 hours salt spray per ASTM B117-90.

5. Optional E-coated aluminum-fin, aluminum tube condenser coils:
 a. Shall have a flexible epoxy polymer coating uniformly applied to all coil external surface areas without material bridging between fins or louvers.
 b. Coating process shall ensure complete coil encapsulation, including all exposed fin edges.
 c. E-coat thickness of 0.8 to 1.2 mil with top coat having a uniform dry film thickness from 1.0 to 2.0 mil on all external coil surface areas, including fin edges, shall be provided.
 d. Shall have superior hardness characteristics of 2H per ASTM D3363-00 and cross-hatch adhesion of 4B-5B per ASTM D3359-02.
 e. Shall have superior impact resistance with no cracking, chipping or peeling per NSF/ANSI 51-2002 Method 10.2.

2381 19.13.K. Refrigerant Components
1. Refrigerant circuit shall include the following control, safety, and maintenance features:
 a. Thermostatic Expansion Valve (TXV) shall help provide optimum performance across the entire operating range. Shall contain removable power element to allow change out of power element and bulb without removing the valve body.
 b. Refrigerant filter drier.
 c. Service gauge connections on suction and discharge lines.
 d. Pressure gauge access through a specially designed screen on the side of the unit.
2. Compressors
 a. Unit shall use one fully hermetic, scroll compressor for each independent refrigeration circuit.
 b. Models shall be available with 2 compressor/2 stage cooling.
 c. Compressor motors shall be cooled by refrigerant gas passing through motor windings.
 d. Compressors shall be internally protected from high discharge temperature conditions.
 e. Compressors shall be protected from an over-temperature and over-amperage conditions by an internal, motor overload device.
 f. Compressor shall be factory mounted on rubber grommets.
 g. Compressor motors shall have internal line break thermal, current overload and high pressure differential protection.
 h. Crankcase heaters shall not be required for normal operating range, unless provided by the factory.

2381 19.13.L. Filter Section
1. Filters access is specified in the unit cabinet section of this specification.
2. Filters shall be held in place by a preformed slide out filter tray, facilitating easy removal and installation.
3. Shall consist of factory-installed, low velocity, throw-away 2-in. thick fiberglass filters.
4. Filters shall be standard, commercially available sizes.
5. Only one size filter per unit is allowed.
6. 4-in filter capability is possible with a field installed pre engineered slide out filter track accessory. 4-in filters are field furnished.

2381 19.13.M. Evaporator Fan and Motor
1. Evaporator fan motor:
 a. Shall have inherent automatic-reset thermal overload protection or circuit breaker.
 b. Shall have a maximum continuous bhp rating for continuous duty operation; no safety factors above that rating shall be required.
2. Belt-driven Evaporator Fan:
 a. Belt drive shall include an adjustable-pitch motor pulley and belt break protection system.
 b. Shall use rigid pillow block bearing system with lubricate fittings at are accessible or lubrication line.
 c. Blower fan shall be double-inlet type with forward-curved blades.
 d. Shall be constructed from steel with a corrosion resistant finish and dynamically balanced.
 e. Standard on all 17-28 size models with Humidi-MiZer.

2381 19.13.N. Condenser Fans and Motors
1. Condenser fan motors:
 a. Shall be a totally enclosed motor.
 b. Shall use permanently lubricated bearings.
 c. Shall have inherent thermal overload protection with an automatic reset feature.
 d. Shall use a shaft-down design.
2. Condenser Fans:
 a. Shall be a direct-driven propeller type fan.
 b. Shall have aluminum blades riveted to corrosion-resistant steel spiders and shall be dynamically balanced.
23 81 19.13.0. Special Features, Options and Accessories
1. EnergyX and Economizer
 a. System Description
 One-piece EnergyX (Energy Recovery Ventilation) unit is a factory-installed option to be used with WeatherMaster 50HC units for use in vertical return applications only.
2. Products
 a. Equipment (Standard)
 (1.) General
 The EnergyX unit shall be a factory assembled, single piece unit. Contained within the unit enclosure shall be all factory wiring with a single, pre-determined point of power input and a single point of 24-volt control wiring.
 b. Unit Cabinet
 (1.) Unit cabinet shall be constructed of galvanized steel coated with a pre-painted baked enamel finish.
 (2.) All models shall have hoods installed over outside air intake and exhaust openings. Outside air hood shall have aluminum water entrainment filters.
 (3.) All models have 1-in., 2 pound density fiberglass insulation.
 (4.) Hinged access doors with compression latches shall be provided on all units for access to fans and filters. Hinged doors shall be provided with at least one handle capable of being locked.
 (5.) Exhaust air stream shall have back-draft dampers to prevent air penetration during off cycles.
 (6.) Holes shall be provided in the base rails for rigging shackles to facilitate overhead rigging.
 c. Blowers
 (1.) Blowers shall be direct drive with variable speed motors.
 (2.) Blower wheel shall be made of steel with a corrosion resistant finish. It shall be dynamically balanced, double-inlet type with backward-curved blades.
 (3.) Blower shall be mounted on neoprene vibration isolation pads.
 (4.) Motor shall be high efficiency and have thermal overload protection.
 d. Filter Section
 (1.) Standard filter section shall accept commercially available, 2-in. pleated filter(s).
 e. Controls and Safeties
 (1.) The EnergyX unit shall operate in conjunction with rooftop unit fan.
 f. Electrical Requirements
 (1.) All unit power wiring shall enter unit cabinet at a single location.
 g. Energy Recovery Cassette
 (1.) The energy recovery media shall have a minimum of 70% effectiveness at nominal unit airflow.
(2.) Energy wheel performance shall be ARI Standard 1060 Certified and bear the ARI Certified Product Seal.
(3.) The energy recovery cassette shall be an UL Recognized component for electrical and fire safety.
(4.) The wheel shall be coated with silica gel desiccant, permanently bonded without the use of binders or adhesives.
(5.) Coated wheels shall be washable with detergent or alkaline coil cleaner and water.
(6.) The silica gel shall not dissolve or deliquesce in the presence of water or high humidity.
(7.) The substrate shall be made of a lightweight polymer and shall not degrade or require additional coatings for application in coastal environments.
(8.) The wheel polymer layers shall be wound continuously with one flat and one structured layer in an ideal parallel plate geometry providing laminar flow and minimum pressure drop.
(9.) The polymer layers shall be captured in a stainless steel wheel frame or aluminum and stainless steel segment frames that provide a rigid and self-supporting matrix.
(10.) Energy recovery wheels greater than 19 inches in diameter shall be provided with removable wheel segments.
(11.) Wheel frame shall be a welded hub, spoke and rim assembly of stainless, plated, and or coated steel and shall be self supporting without the wheel segments in place.
(12.) Wheel segments shall be removable without the use of tools to facilitate maintenance and cleaning.
(13.) Wheel rim shall be continuous rolled stainless steel and the wheel shall be connected to the shaft by means of taper locks.
(14.) Wheel bearings shall provide an L-10 life of 400,000 hours.
(15.) Drive belts of stretch urethane shall be provided for wheel rim drive without the need for external tensioners or adjustment.

3. Special Features (Options and Accessories)
 a. Supply and exhaust air frost control option
 (1.) Factory-installed frost protection module shall sense pressure differential across the energy recovery cassette.
 (2.) Supply blower shall be shut-off if the pressure differential across the energy recovery cassette exceeds an adjustable set point. Blower shall remain off for an adjustable time period.
 (3.) Exhaust blower and wheel shall remain in operation in order to remove any frost build-up on the wheel.
 b. EnergyX maintenance indicator package
 A factory-installed switch shall monitor EnergyX blowers and wheel motor amp draw and send a signal to field-supplied 24-v indicator upon amperage surge that maintenance required.
 c. Filter maintenance indicator
 A factory-installed differential pressure switch shall measure pressure drop across the outside air filter and activate a field-supplied 24-v indicator when airflow is restricted. It shall not interrupt EnergyX operation. Switch set point shall be adjustable.
 d. EnergyX free cooling with enthalpy and stop/jog control
 (1.) An enthalpy sensor shall prevent the wheel from rotating if the outside air conditions are acceptable for free cooling. Both exhaust and supply blowers will remain on.
 (2.) Stop-Jog-Control shall energize the wheel periodically during the free cooling operation of the EnergyX to prevent dirt build-up on the wheel.
 e. Economizer Option
 (1.) The economizer shall be integrated in the energy recovery module and shall allow air to bypass the energy recovery wheel for free cooling and fail safe operation. Tilting wheel mechanisms shall not be allowed.
 (2.) The economizer damper shall be motorized with factory installed, 24-volt Belimo actuator.
 (3.) The EnergyX shall be capable of using the economizer in a free cooling operation.
 (4.) The economizer shall utilize enthalpy sensor controls when in the economizer mode.
 f. CO₂ Sensor
 (1.) The modulating airflow energy recovery unit shall be capable of incorporating a CO₂ sensor for use with Demand Control Ventilation.
 (2.) The CO₂ sensor shall connect to the base rooftop unit’s digital controller.
 (3.) The modulating airflow energy recovery unit shall use at a minimum, a high & low CFM airflow set point when a CO₂ sensor is used.
 g. Roof Curb Extension (PM16-28 sizes with EnergyX) Accessory for use with EnergyX units
 (1.) The energy recovery module shall us the standard rooftop unit rooftop curb.
 (2.) Rooftop extensions, support rails or other devices that come in contact with the roof surface to support the energy recovery module shall not be allowed.
4. Head Pressure Control Package
 a. Controller shall control coil head pressure by condenser-fan speed modulation or condenser-fan cycling and wind baffles.
 b. Shall consist of solid-state control and condenser-coil temperature sensor to maintain condensing temperature between 90°F (32°C) and 110°F (43°C) at outdoor ambient temperatures down to -20°F (-29°C).
5. Condenser Coil Hail Guard Assembly
 a. Shall protect against damage from hail.
 b. Shall be louvered style design.
6. Unit-Mounted, Non-Fused Disconnect Switch:
 a. Switch shall be factory-installed, internally mounted.
 b. National Electric Code (NEC) and ETL approved non-fused switch shall provide unit power shutoff.
 c. Shall be accessible from outside the unit
 d. Shall provide local shutdown and lockout capability.
7. Convenience Outlet:
 a. Powered convenience outlet.
 (1.) Outlet shall be powered from main line power to the rooftop unit.
 (2.) Outlet shall be powered from line side of disconnect by installing contractor, as required by code. If outlet is powered from load side of disconnect, unit electrical ratings shall be ETL certified and rated for additional outlet amperage.
 (3.) Outlet shall be factory-installed and internally mounted with easily accessible 115-v female receptacle.
 (4.) Outlet shall include 15 amp GFI receptacles with independent fuse protection.
 (5.) Voltage required to operate convenience outlet shall be provided by a factory-installed step-down transformer.
 (6.) Outlet shall be accessible from outside the unit.
 (7.) Outlet shall include a field-installed “Wet in Use” cover.
 b. Non-Powered convenience outlet.
 (1.) Outlet shall be powered from a separate 115/120v power source.
 (2.) A transformer shall not be included.
 (3.) Outlet shall be factory-installed and internally mounted with easily accessible 115-v female receptacle.
 (4.) Outlet shall include 15 amp GFI receptacles with independent fuse protection.
 (5.) Outlet shall be accessible from outside the unit.
 (6.) Outlet shall include a field-installed “Wet in Use” cover.
8. Thru-the-Base Connectors:
 a. Kits shall provide connectors to permit electrical connections to be brought to the unit through the unit basepan.
 b. Minimum of four connection locations per unit.
9. Fan/Filter Status Switch:
 a. Switch shall provide status of indoor evaporator fan (ON/OFF) or filter (CLEAN/DIRTY).
 b. Status shall be displayed either over communication bus (when used with direct digital controls) or with an indicator light at the thermostat.
10. Roof Curbs (Vertical):
 a. Full perimeter roof curb with exhaust capability providing separate air streams for energy recovery from the exhaust air without supply air contamination.
 b. Formed galvanized steel with wood nailer strip and shall be capable of supporting entire unit weight.
 c. Permits installation and securing of ductwork to curb prior to mounting unit on the curb.
11. High-Static Indoor Fan Motor(s) and Drive(s):
 a. High-static motor(s) and drive(s) shall be factory-installed to provide additional performance range.
12. Thru-the-Bottom Utility Connectors:
 a. Kit shall provide connectors to permit gas and electrical connections to be brought to the unit through the basepan.
13. Indoor Air Quality (CO₂) Sensor, factory or field installed:
 a. Shall be able to provide demand ventilation indoor air quality (IAQ) control.
 b. The IAQ sensor shall be available in duct mount, wall mount, or wall mount with LED display. The setpoint shall have adjustment capability.
 a. Shall be a Four-Wire Controller and Detector.
b. Shall be environmental compensated with differential sensing for reliable, stable, and drift-free sensitivity.
c. Shall use magnet-activated test/reset sensor switches.
d. Shall have tool-less connection terminal access.
e. Shall have a recessed momentary switch for testing and resetting the detector.
f. Controller shall include:
 (1.) One set of normally open alarm initiation contacts for connection to an initiating device circuit on a fire
 alarm control panel.
 (2.) Two Form-C auxiliary alarm relays for interface with rooftop unit or other equipment.
 (3.) One Form-C supervision (trouble) relay to control the operation of the Trouble LED on a remote test/reset
 station.
 (4.) Capable of direct connection to two individual detector modules.
 (5.) Can be wired to up to 14 other duct smoke detectors for multiple fan shutdown applications.

15. Winter start kit
 a. Shall contain a bypass device around the low pressure switch.
 b. Shall be required when mechanical cooling is required down to 25°F (-4°C).
 c. Shall not be required to operate on an economizer when below an outdoor ambient of 40°F (4°C).

16. Time Guard
 a. Shall prevent compressor short cycling by providing a 5-minute delay (2 minutes) before restarting a
 compressor after shutdown for any reason.
 b. One device shall be required per compressor.

17. Electric Heat:
 a. Heating Section
 (1.) Heater element open coil resistance wire, nickel-chrome alloy, 0.29 inches inside diameter, strung through
 ceramic insulators mounted on metal frame. Coil ends are staked and welded to terminal screw slots.
 (2.) Heater assemblies are provided with integral fusing for protection of internal heater circuits not exceeding
 48 amps each. Auto reset thermo limit controls, magnetic heater contactors (24 v coil) and terminal block all
 mounted in electric heater control box (minimum 18 ga galvanized steel) attached to end of heater assembly.

18. Hinged Access Panels
 a. Shall provide easy access through integrated quarter turn latches.
 b. Shall be on major panels of – filter, control box, and fan motor.