Installation Instructions

CONTENTS
SAFETY CONSIDERATIONS ... 1
MODEL NUMBER NOMENCLATURE AND DIMENSIONS 3
INSTALLATION ... 7
Step 1 — Plan for Unit Location 7
 • ROOF MOUNT
Step 2 — Plan for Sequence of Unit Installation 7
 • CURB-MOUNTED INSTALLATION
 • PAD-MOUNTED INSTALLATION
 • FRAME-MOUNTED INSTALLATION
Step 3 — Inspect Unit .. 7
Step 4 — Provide Unit Support 7
 • ROOF CURB MOUNT
 • SLAB MOUNT (HORIZONTAL UNITS ONLY)
 • ALTERNATE UNIT SUPPORT (IN LIEU OF CURB OR SLAB MOUNT)
Step 5 — Field Fabricate Ductwork 9
Step 6 — Rig and Place Unit 9
 • POSITIONING ON CURB
Step 7 — Convert to Horizontal and Connect Ductwork (When Required) 10
Step 8 — Install Outside Air Hood 11
 • ECONOMIZER AND TWO-POSITION DAMPER HOOD PACKAGE REMOVAL AND SETUP (FACTORY OPTION)
 • ECONOMIZER AND TWO-POSITION HOOD
Step 9 — Units with Hinged Panels Only 12
Step 10 — Install Flue Hood 12
 • FACTORY-OPTION THRU-BASE CONNECTIONS (GAS CONNECTIONS)
Step 12 — Install External Condensate Trap and Line 15
Step 13 — Make Electrical Connections 15
 • FIELD POWER SUPPLY
 • UNITS WITH FACTORY-INSTALLED NON-FUSED DISCONNECT
 • UNITS WITHOUT FACTORY-INSTALLED NON-FUSED DISCONNECT
 • ALL UNITS
 • CONVENIENCE OUTLETS
 • FACTORY-OPTION THRU-BASE CONNECTIONS (ELECTRICAL CONNECTIONS)
 • UNITS WITHOUT THRU-BASE CONNECTIONS (ELECTRICAL CONNECTIONS)
 • FIELD CONTROL WIRING
 • THERMOSTAT
 • HEAT ANTICIPATOR SETTINGS
 • HUMIDI-MIZER® CONTROL CONNECTIONS
 • TYPICAL UNIT WIRING DIAGRAMS
Integrated Gas Controller .. 25
EconoMiSe® X (Factory Option) 26
 • SYSTEM COMPONENTS
 • SPECIFICATIONS
 • INPUTS
 • OUTPUTS
 • ENVIRONMENTAL
 • ECONOMIZER MODULE WIRING DETAILS
 • INTERFACE OVERVIEW
 • SETUP AND CONFIGURATION
 • ENTHALPY SETTINGS
 • TWO-SPEED FAN OPERATION
 • CHECKOUT
 • TROUBLESHOOTING
RTU Open Controller (Factory Option) 40
SystemVu™ Controller (Factory Option) 40
Controller Options .. 40
 • LOW AMBIENT
Smoke Detectors .. 40
Step 14 — Adjust Factory-Installed Options 41
 • SMOKE DETECTORS
 • ECONOMISER® IV OCCUPANCY SWITCH
Step 15 — Install Accessories 41
Step 16 — Fan Speed Set Up 42
 • UNITS WITH ELECTRO-MECHANICAL CONTROLS
 • UNITS WITH SYSTEMVU™ CONTROLS
START-UP CHECKLIST ... CL-1

SAFETY CONSIDERATIONS
Improper installation, adjustment, alteration, service, maintenance, or use can cause explosion, fire, electrical shock or other conditions which may cause personal injury or property damage. Consult a qualified installer, service agency, or your distributor or branch for information or assistance. The qualified installer or agency must use factory-authorized kits or accessories when modifying this product. Refer to the individual instructions packaged with the kits or accessories when installing.

Follow all safety codes. Wear safety glasses and work gloves. Use quenching cloths for brazing operations and have a fire extinguisher available. Read these instructions thoroughly and follow all warnings or cautions attached to the unit. Consult local building codes and appropriate national electrical codes (in USA, ANSI/NFPA70, National Electrical Code (NEC); in Canada, CSA C22.1) for special requirements.

It is important to recognize safety information. This is the safety-alert symbol ⚠️. When you see this symbol on the unit and in instructions or manuals, be alert to the potential for personal injury.

Understand the signal words DANGER, WARNING, CAUTION, and NOTE. These words are used with the safety-alert symbol. DANGER identifies the most serious hazards which will result in severe personal injury or death. WARNING signifies hazards which could result in personal injury or death. CAUTION is used to identify unsafe practices, which may result in minor personal injury or product and property damage. NOTE is used to highlight suggestions which will result in enhanced installation, reliability, or operation.
WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could cause personal injury or death.

Before performing service or maintenance operations on unit, turn off main power switch to unit and install lock(s) and lockout tag(s). Ensure electrical service to rooftop unit agrees with voltage and amperage listed on the unit rating plate. Unit may have more than one power switch.

WARNING

FIRE, EXPLOSION HAZARD

Failure to follow this warning could result in death, serious personal injury and/or property damage.

Disconnect gas piping from unit when pressure testing at pressure greater than 0.5 psig. Pressures greater than 0.5 psig will cause gas valve damage resulting in hazardous condition. If gas valve is subjected to pressure greater than 0.5 psig, it must be replaced before use. When pressure testing field-supplied gas piping at pressures of 0.5 psig or less, a unit connected to such piping must be isolated by closing the manual gas valve(s).

WARNING

UNIT OPERATION AND SAFETY HAZARD

Failure to follow this warning could cause personal injury, death and/or equipment damage.

Puron® (R-410A) refrigerant systems operate at higher pressures than standard R-22 systems. Do not use R-22 service equipment or components on Puron refrigerant equipment.

WARNING

PERSONAL INJURY AND ENVIRONMENTAL HAZARD

Failure to follow this warning could cause personal injury or death.

Relieve pressure and recover all refrigerant before system repair or final unit disposal.

Wear safety glasses and gloves when handling refrigerants. Keep torches and other ignition sources away from refrigerants and oils.

CAUTION

CUT HAZARD

Failure to follow this caution may result in personal injury. Sheet metal parts may have sharp edges or burrs. Use care and wear appropriate protective clothing, safety glasses and gloves when handling parts and servicing air conditioning equipment.

WARNING

CARBON-MONOXIDE POISONING HAZARD

Failure to follow instructions could result in severe personal injury or death due to carbon-monoxide poisoning, if combustion products infiltrate into the building.

Check that all openings in the outside wall around the vent (and air intake) pipe(s) are sealed to prevent infiltration of combustion products into the building.

Check that furnace vent (and air intake) terminal(s) are not obstructed in any way during all seasons.

AVERTISSEMENT

RISQUE D’INTOXICATION AU MONOXYDE DE CARBONE

Si ces directives ne sont pas suivies, cela peut entraîner des blessures graves ou une intoxication au monoxyde de carbone pouvant causer la mort, si des produits de combustion s’infiltrent dans le bâtiment.

Vérifier que toutes les ouvertures pratiquées dans le mur extérieur autour du ou des tuyaux d’évent (et de la prise d’air) sont scellées de manière à empêcher l’infiltration de produits de combustion dans le bâtiment.

Veiller à ce que la ou les sorties de l’évent de l’appareil de chauffage (et la prise d’air) ne soient, en aucune façon, obstruées, quelle que soit la saison.

WARNING

FIRE HAZARD

Failure to follow this warning could result in personal injury, death, and/or property damage.

Inlet pressure tap set screw must be tightened and 1/8-in. NPT pipe plug must be installed to prevent gas leaks.

WARNING

FIRE HAZARD

Failure to follow this warning could result in personal injury, death, and/or property damage.

Manifold pressure tap set screw must be tightened and 1/8-in. NPT pipe plug must be installed to prevent gas leaks.
MODEL NUMBER NOMENCLATURE AND DIMENSIONS

See Fig. 1 for 48FC model number nomenclature. See Fig. 2 for unit dimensional drawings. Figure 2 also shows service clearance dimensions.

Rated Indoor Airflow

Table 1 lists the rated indoor airflow used for the AHRI efficiency rating for the units covered in this document.

<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>RATED INDOOR AIRFLOW (CFM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48FC*A/B04</td>
<td>1050</td>
</tr>
<tr>
<td>48FC*A/B05</td>
<td>1500</td>
</tr>
<tr>
<td>48FC*A/B06</td>
<td>2000</td>
</tr>
<tr>
<td>48FC*M/N07</td>
<td>2400</td>
</tr>
</tbody>
</table>

Table 1 — Rated Indoor Airflow

<table>
<thead>
<tr>
<th>Position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
</table>

Unit Heat Type
48 – Gas Heat Packaged Rooftop

Model Series - WeatherMaker®
FC – 14.0 SEER Standard Efficiency, sizes 04-06
15.0 IEER Standard Efficiency, size 07

Heat Size
D = Low Gas Heat
E = Medium Gas Heat
F = High Gas Heat
L = Low NOx – Low Gas Heat¹
S = Low Heat w/ Stainless Steel Exchanger
R = Medium Heat w/ Stainless Steel Exchanger
T = High Heat w/ Stainless Steel Exchanger
(Low NOx models include Stainless Steel HX)

Refrig. Systems Options
A = Standard One Stage Cooling Models¹
B = Standard One Stage Cooling Models
with Humidi-MiZer® system²,³
M = Single Circuit, Two Stage Cooling²,³
N = Single Circuit, Two Stage Cooling with
Humidi-MiZer system²

Cooling Tons
04 = 3 tons
05 = 4 tons
06 = 5 tons
07 = 6 tons

Sensor Options
A = None
B = Return Air (RA) Smoke Detector
C = Supply Air (SA) Smoke Detector
D = RA + SA Smoke Detector
E = CO₂ Sensor
F = RA Smoke Detector and CO₂ Sensor
G = SA Smoke Detector and CO₂ Sensor
H = RA + SA Smoke Detector and CO₂ Sensor
J = Condensate Overflow Switch
K = Condensate Overflow Switch and RA Smoke Detector
L = Condensate Overflow Switch and RA and SA Smoke Detectors
M = Condensate Overflow Switch and SA Smoke Detector

Indoor Fan Options
1 = Direct Drive – EcoBlue – Standard Static
2 = Direct Drive – EcoBlue – Medium Static
3 = Direct Drive – EcoBlue – High Static

Coil Options – (Outdoor - Indoor - Hail Guard)
A = Al/Cu - Al/Cu
B = Precoat Al/Cu - Al/Cu
C = E-coat Al/Cu - Al/Cu
D = E-coat Al/Cu - E-coat Al/Cu
E = Cu/Cu - Al/Cu
F = Cu/Cu - Cu/Cu
M = Al/Cu - Al/Cu - Louvered Hail Guard
N = Precoat Al/Cu - Al/Cu - Louvered Hail Guard
P = E-coat Al/Cu - Al/Cu - Louvered Hail Guard
Q = E-coat Al/Cu - E-coat Al/Cu - Louvered Hail Guard
R = Cu/Cu - Al/Cu - Louvered Hail Guard
S = Cu/Cu - Cu/Cu - Louvered Hail Guard

Design Revision
- = Factory Design Revision

Voltage
1 = 575/3/60
3 = 208-230/1/60
5 = 208-230/3/60
6 = 460/3/60

¹ Size 04/05/06 models only
² Size 07 models only
³ Units with Humidi-MiZer System include Low Ambient controller

Note: On single phase (-3 voltage code) models, the following are not available as a factory-installed option:
- Humidi-MiZer System
- Two-Position Damper
- Coated Coils or Cu Fin Coils
- Louvered Hail Guards
- Economizer or 2-Position Damper
- Powered 115 Volt Convenience Outlet

Fig. 1 — 48FC 04-07 Model Number Nomenclature
Fig. 2 — Unit Dimensional Drawing (cont)
Fig. 2 — Unit Dimensional Drawing (cont)
Step 1 — Plan for Unit Location

Select a location for the unit and its support system (curb or other) that provides for the minimum clearances required for safety. This includes the clearance to combustible surfaces, unit performance and service access below, around and above unit as specified in unit drawings. See Fig. 2 on page 5.

NOTE: Consider also the effect of adjacent units.

Be sure that unit is installed such that snow will not block the combustion intake or flue outlet.

Unit may be installed directly on wood flooring or on Class A, B, or C roof-covering material when roof curb is used.

Do not install unit in an indoor location. Do not locate air inlets near exhaust vents or other sources of contaminated air. For proper unit operation, adequate combustion and ventilation air must be provided in accordance with Section 5.3 (Air for Combustion and Ventilation) of the National Fuel Gas Code, ANSI Z223.1 (American National Standards Institute) and NFPA (National Fire Protection Association) 54 TIA-54-84-1. In Canada, installation must be in accordance with the CAN1-B149 installation codes for gas burning appliances.

Although unit is weatherproof, avoid locations that permit water from higher level runoff and overhangs to fall onto the unit. Locate mechanical draft system flue assembly at least 4 ft (1.2 m) from any opening through which combustion products could enter the building, and at least 4 ft (1.2 m) from any adjacent building (or per local code). Locate the flue assembly at least 10 ft (3.05 m) from an adjacent unit’s fresh air intake hood if within 3 ft (0.91 m) of same elevation (or per local code). When unit is located adjacent to public walkways, flue assembly must be at least 7 ft (2.1 m) above grade.

Select a unit mounting system that provides adequate height to allow installation of condensate trap per requirements. Refer to Step 12 — Install External Condensate Trap and Line on page 15 for required trap dimensions.

ROOF MOUNT

Check building codes for weight distribution requirements. Unit operating weights are shown in Table 2.

Table 2 — Operating Weights

<table>
<thead>
<tr>
<th>48FC—</th>
<th>UNIT LB (KG)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>04</td>
</tr>
<tr>
<td>Base Unit</td>
<td>482 (219)</td>
</tr>
<tr>
<td>Economizer</td>
<td></td>
</tr>
<tr>
<td>Vertical</td>
<td>50 (23)</td>
</tr>
<tr>
<td>Horizontal</td>
<td>80 (36)</td>
</tr>
<tr>
<td>Humidi-Mizer® System</td>
<td>50 (23)</td>
</tr>
<tr>
<td>Cu Fins</td>
<td>25 (11)</td>
</tr>
<tr>
<td>Powered Outlet</td>
<td>35 (16)</td>
</tr>
<tr>
<td>Curb</td>
<td></td>
</tr>
<tr>
<td>14 in. (356 mm)</td>
<td>115 (52)</td>
</tr>
<tr>
<td>24 in. (610 mm)</td>
<td>197 (89)</td>
</tr>
</tbody>
</table>

Step 2 — Plan for Sequence of Unit Installation

The support method used for this unit will dictate different sequences for the steps of unit installation. For example, on curb-mounted units, some accessories must be installed on the unit before the unit is placed on the curb. Review the following for recommended sequences for installation steps.

CURB-MOUNTED INSTALLATION

1. Install curb
2. Install field-fabricated ductwork inside curb
3. Install accessory thru-base service connection package (affects curb and unit) (refer to accessory installation instructions for details)
4. Prepare bottom condensate drain connection to suit planned condensate line routing (refer to Step 12 — Install External Condensate Trap and Line on page 15 for details)
5. Rig and place unit
6. Install outdoor air hood
7. Install flue hood
8. Install gas piping
9. Install condensate line trap and piping
10. Make electrical connections
11. Install other accessories

PAD-MOUNTED INSTALLATION

1. Prepare pad and unit supports
2. Check and tighten the bottom condensate drain connection plug
3. Rig and place unit
4. Convert unit to side duct connection arrangement
5. Install field-fabricated ductwork at unit duct openings
6. Install outdoor air hood
7. Install flue hood
8. Install gas piping
9. Install condensate line trap and piping
10. Make electrical connections
11. Install other accessories

FRAME-MOUNTED INSTALLATION

Frame-mounted applications generally follow the sequence for a curb installation. Adapt the sequence as required to suit specific installation plan.

Step 3 — Inspect Unit

Inspect unit for transportation damage. File any claim with transportation agency.

Confirm before installation of unit that voltage, amperage and circuit protection requirements listed on unit data plate agree with power supply provided.

On units with hinged panel option, check to be sure all latches are snug and in closed position.

Locate the carton containing the outside air hood parts. Do not remove carton until unit has been rigged and located in final position.

Step 4 — Provide Unit Support

ROOF CURB MOUNT

Accessory roof curb details and dimensions are shown in Fig. 3 (on page 8). Assemble and install accessory roof curb in accordance with instructions shipped with the curb.

NOTE: The gasketing of the unit to the roof curb is critical for a watertight seal. Install gasket supplied with the roof curb as shown in Fig. 3. Improperly applied gasket can also result in air leaks and poor unit performance.
<table>
<thead>
<tr>
<th>ROOF CURB</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRIBCURB01A01</td>
<td>14" [356]</td>
</tr>
<tr>
<td>CRIBCURB02A01</td>
<td>30" [762]</td>
</tr>
</tbody>
</table>

Notes:
1. ROOF CURB ACCESSORY IS SHIPPED DISASSEMBLED.
2. INSULATED PANELS: 25.4 [1"] THK. POLYURETHANE FOAM, 44.5 [1-3/4"] DENSITY.
3. DIMENSIONS IN [] ARE IN MILLIMETERS.
4. ROOF CURB: 18 GAUGE STEEL.
5. ATTACH DUCTWORK TO CURB (RANGES OF DUCT REST ON CURB).
6. SEE ICE CLEARANCE 4 FEET ON EACH SIDE.
7. DIRECTION OF AIR FLOW:
8. CONNECTOR PACKAGE CRBTMPWR001A01 IS FOR THRU-THE-CURB GAS TYPE.
 PACKAGE CRBTMPWR003A01 IS FOR THRU-THE-BOTTOM TYPE GAS CONNECTIONS.
9. CONNECTOR PKG ACC. GAS CONNECTION TYPE GAS FITTING POWER WIRING FITTING CONTROL WIRING FITTING ACCESSORY CONVENIENCE OUTLET WIRING CONNECTOR
 - CRBTMPWR003A01 THRU THE BOTTOM 1/2" [12.7] NPT 1/2" [12.7] NPT

Fig. 3 — Roof Curb Details

View "B" Corner Detail

Section E-E Scale 1:250

Notes:
- ROOF CURB ACCESSORY IS SHIPPED DISASSEMBLED.
- INSULATED PANELS: 25.4 [1"] THK. POLYURETHANE FOAM, 44.5 [1-3/4"] DENSITY.
- DIMENSIONS IN [] ARE IN MILLIMETERS.
- ROOF CURB: 18 GAUGE STEEL.
- ATTACH DUCTWORK TO CURB (RANGES OF DUCT REST ON CURB).
- SEE ICE CLEARANCE 4 FEET ON EACH SIDE.
- DIRECTION OF AIR FLOW.
- CONNECTOR PACKAGE CRBTMPWR001A01 IS FOR THRU-THE-CURB GAS TYPE.
 PACKAGE CRBTMPWR003A01 IS FOR THRU-THE-BOTTOM TYPE GAS CONNECTIONS.
- CONNECTOR PKG ACC. GAS CONNECTION TYPE GAS FITTING POWER WIRING FITTING CONTROL WIRING FITTING ACCESSORY CONVENIENCE OUTLET WIRING CONNECTOR
 - CRBTMPWR003A01 THRU THE BOTTOM 1/2" [12.7] NPT 1/2" [12.7] NPT

Typical (4) Sides

- SUPPLY AIR
- RETURN AIR

Opening

Supplies:
- UNIT
- NAIL (FIELD SUPPLIED)
- TYPICAL (4) SIDES
- SHOP DRAWING (FIELD SUPPLIED)
- ROOFING FELT (FIELD SUPPLIED)
- COUNTER FLASHING (FIELD SUPPLIED)
- DUCT (FIELD SUPPLIED)
- ROOF INSULATION (FIELD SUPPLIED)
- GAS SERVICE PLATE THRU THE CURB
- DDT HOLE 2" [50.8] @ ASSEMBLY IF REQUIRED
- SEE NOTE #6
- SEE NOTE #2
- 14" [356]
- 5.42" [137.3]
- 21.74" [552.2]
- 11.96" [303.2]
- 10.87" [276.0]
- 3.96" [100.5]
- 16.12" [409.2]
- 3.00" [76.2]
- 21.96" [557.4]
- 3.00" [76.2]
- 20.44" [518.9]
- 3.00" [76.2]
- 3.00" [76.2]
- 11 3/4" [303.2]
- 8 9/16" [217.5]
- 4 9/16" [115.5]
- 2 1/2" [63.5]

Diagram:

- View "B" (scale 1:250)
- Section E-E
- Return Air Opening
- Supply Air Opening
- Insulated Deck Panels
- Gas Service Plate Thru the Curb
- Drill Hole 2" [50.8] @ Assembly (See Note #6)
- See Note #2
- See Note #2

Material List:
- Roofing Material
- Roofing Felt
- Counter Flashing
- Duct
- Gas Service Plate
- Gas Faucet (Field Supplied)
- Nails (Field Supplied)
- Unit
Fig. 4 — Unit Leveling Tolerances

Curb should be level. This is necessary for unit drain to function properly. Unit leveling tolerances are shown in Fig. 4. Refer to Accessory Roof Curb Installation Instructions for additional information as required.

Install insulation, cant strips, roofing felt, and counter flashing as shown. Ductwork must be attached to curb and not to the unit. The accessory thru-the-base power and gas connection package must be installed before the unit is set on the roof curb. If field-installed thru-the-roof curb gas connections are desired, use factory-supplied 1/2-in. pipe coupling and gas plate assembly to mount the thru-the-roof curb connection to the roof curb. Gas connections and power connections to the unit must be field-installed after the unit is installed on the roof curb.

If electric and control wiring is to be routed through the basepan, attach the accessory thru-the-base service connections to the basepan in accordance with the accessory installation instructions.

SLAB MOUNT (HORIZONTAL UNITS ONLY)

Provide a level concrete slab that extends a minimum of 6 in. (150 mm) beyond unit cabinet. Install a gravel apron in front of condenser coil air inlet to prevent grass and foliage from obstructing airflow.

NOTE: Horizontal units may be installed on a roof curb if required.

ALTERNATE UNIT SUPPORT (IN LIEU OF CURB OR SLAB MOUNT)

A non-combustible sleeper rail can be used in the unit curb support area. If sleeper rails cannot be used, support the long sides of the unit with a minimum of 3 equally spaced 4-in. x 4-in. (102 mm x 102 mm) pads on each side.

Step 5 — Field Fabricate Ductwork

Cabinet return-air static pressure (a negative condition) shall not exceed 0.35 in. wg (87 Pa) with economizer or 0.45 in. wg (112 Pa) without economizer.

For vertical ducted applications, secure all ducts to roof curb and building structure. Do not connect ductwork to unit.

Fabricate supply ductwork so that the cross sectional dimensions are equal to or greater than the unit supply duct opening dimensions for the first 18-in. (458 mm) of duct length from the unit basepan.

Insulate and weatherproof all external ductwork, joints, and roof openings with counter flashing and mastic in accordance with applicable codes.

Ducts passing through unconditioned spaces must be insulated and covered with a vapor barrier.

If a plenum return is used on a vertical unit, the return should be ducted through the roof deck to comply with applicable fire codes.

A minimum clearance is not required around ductwork.

Step 6 — Rig and Place Unit

Keep unit upright and do not drop. Spreaders bars are required. Rollers may be used to move unit across a roof. Rigging materials under unit (cardboard or wood) must be removed PRIOR to placing the unit on the roof curb. Level by using unit frame as a reference. See Table 2 and Fig. 5 for additional information.

Lifting holes are provided in base rails as shown in Fig. 5. Refer to rigging instructions on unit.

Rigging materials under unit (cardboard or wood to prevent basepan damage) must be removed PRIOR to placing the unit on the roof curb.

When using the standard side drain connection, ensure the red plug in the alternate bottom connection is tight. Do this before setting the unit in place. The red drain plug an be tightened with a 1/2-in. square socket drive extension. For further details, see “Step 12 — Install External Condensate Trap and Line” on page 15.

Before setting the unit onto the curb, recheck gasketing on curb.

POSITIONING ON CURB

Position unit on roof curb so that the following clearances are maintained: 1/4-in. (6.4 mm) clearance between the roof curb and the base rail inside the front and rear, 0.0-in. clearance between the roof curb and the base rail inside on the duct end of the unit. This will result in the distance between the roof curb and the base rail inside on the condenser end of the unit being approximately 1/4-in. (6.4 mm).

Although unit is weatherproof, guard against water from higher level runoff and overhangs.

Flue vent discharge must have a minimum horizontal clearance of 4 ft (1220 mm) from electric and gas meters, gas regulators, and gas relief equipment. Minimum distance between unit and other electrically live parts is 48-in. (1220 mm).
Flue gas can deteriorate building materials. Orient unit such that flue gas will not affect building materials. Locate mechanical draft system flue assembly at least 48 in. (1220 mm) from an adjacent building or combustible material.

NOTE: Installation of accessory flue discharge deflector kit will reduce the minimum clearance to combustible material to 18-in. (460 mm).

After unit is in position, remove rigging skids and shipping materials.

Step 7 — Convert to Horizontal and Connect Ductwork (When Required)

Unit is shipped in the vertical duct configuration. Unit without factory-installed economizer or return-air smoke detector option may be field-converted to horizontal ducted configuration. To convert to horizontal configuration, remove screws from side duct opening covers (see Fig. 6) and remove covers. Use the screws to install the covers on vertical duct openings with the insulation-side down. The panels must be inserted into the notches on the basepan to properly seal. The notches are covered by the tape used to secure the insulation to the basepan and are not easily seen. See Fig. 7 for position of the notches in the basepan. Seals around duct openings must be tight. Secure with screws as shown in Fig. 8. Cover seams with foil duct tape.

Field-supplied flanges should be attached to horizontal duct openings and all ductwork should be secured to the flanges. Insulate and weatherproof all external ductwork, joints, and roof or building openings with counter flashing and mastic in accordance with applicable codes.

Do not cover or obscure visibility to the unit’s informative data plate when insulating horizontal ductwork.
Step 8 — Install Outside Air Hood

ECONOMIZER AND TWO-POSITION DAMPER HOOD PACKAGE REMOVAL AND SETUP (FACTORY OPTION)

NOTE: Economizer and two-position damper are not available as factory installed options for single phase (-3 voltage code) models. Two position damper is not available for 07 models.

The hood is shipped in knock-down form and must be field-assembled. The indoor coil access panel is used as the hood top while the hood sides, divider and filter are packaged together, attached to a metal support tray using plastic stretch wrap, and shipped in the return air compartment behind the indoor coil access panel. The hood assembly’s metal tray is attached to the basepan and also attached to the damper using two plastic tie-wraps.

1. To gain access to the hood, remove the filter access panel. See Fig. 9.

2. Locate the (2) screws holding the metal tray to the basepan and remove. Locate and cut the (2) plastic tie-wraps securing the assembly to the damper. See Fig. 10. Be careful to not damage any wiring or cut tie-wraps securing any wiring.

3. Carefully lift the hood assembly (with metal tray) through the filter access opening and assemble per the steps outlined in the Economizer Hood and Two-Position Hood section below.

ECONOMIZER AND TWO-POSITION HOOD

NOTE: If the power exhaust accessory is to be installed on the unit, the hood shipped with the unit will not be used and must be discarded. Save the aluminum filter for use in the power exhaust hood assembly.

1. The indoor coil access panel will be used as the top of the hood. Remove the screws along the sides and bottom of the indoor coil access panel. See Fig. 11.

2. Swing out indoor coil access panel and insert the hood sides under the panel (hood top). Use the screws provided to attach the hood sides to the hood top. Use screws provided to attach the hood sides to the unit. See Fig. 12.
Step 9 — Units with Hinged Panels Only
If the unit does not have hinged panels, skip this step and continue at Step 10 below.
Relocate latch shipped inside the compressor compartment behind the hinged compressor door to location shown in Fig. 14 after unit installation.

Step 10 — Install Flue Hood
Flue hood is shipped screwed to the basepan beside the burner compartment access panel. Remove from shipping location and using screws provided, install flue hood and screen in location shown in Fig. 15.

Step 11 — Install Gas Piping
Installation of the gas piping must be accordance with local building codes and with applicable national codes. In U.S.A., refer to NFPA 54/ANSI Z223.1 National Fuel Gas Code (NFGC). In Canada, installation must be accordance with the CAN/CSA B149.1 and CAN/CSA B149.2 installation codes for gas burning appliances.

This unit is factory equipped for use with Natural Gas fuel at elevations up to 2000 ft (610 m) above sea level. Unit may be field converted for operation at elevations above 2000 ft (610 m) and/or for use with liquefied petroleum fuel. See accessory kit installation instructions regarding these accessories.

Furnace gas input rate on rating plate is for installation up to 2000 ft (610 m) above sea level. The input rating for altitudes above 2000 ft (610 m) must be derated by 4% for each 1000 ft (305 m) above sea level.

For natural gas applications, gas pressure at unit gas connection must not be less than 4 in. wg (996 Pa) or greater than 13 in. wg (3240 Pa) while the unit is operating. On 48FCF/T*05-07 (high-heat) units, the gas pressure at unit gas connection must not be less than 5 in. wg (1245 Pa) or greater than 13 in. wg (3240 Pa) while the unit is operating, see Table 3. For liquefied petroleum applications, the gas pressure must not be less than 11 in. wg (2740 Pa) or greater than 13 in. wg (3240 Pa) at the unit connection, see Table 4.
The gas supply pipe enters the unit at the burner access panel on the front side of the unit, through the long slot at the bottom of the access panel. The gas connection to the unit is made to the 1/2-in. FPT gas inlet port on the unit gas valve. Manifold pressure is factory-adjusted for natural gas fuel use. Adjust as required to obtain best flame characteristics. See Table 5.

Manifold pressure for LP fuel use must be adjusted to specified range. Follow instructions in the accessory kit to make initial readjustment, see Table 6.

Install a gas supply line that runs to the unit heating section. Refer to the NFPA 54/NFGC or equivalent code for gas pipe sizing data. Do not use a pipe size smaller than 1/2-inch. Size the gas supply line to allow for a maximum pressure drop of 0.5-in. wg (124 Pa) between gas regulator source and unit gas valve connection when unit is operating at high-fire flow rate. The gas supply line can approach the unit in three ways: horizontally from outside the unit (across the roof), thru-curb/under unit basepan (accessory kit required), or through unit basepan (factory option or accessory kit required). Consult accessory kit installation instructions for details on these installation methods. Observe clearance to gas line components per Fig. 16.

<table>
<thead>
<tr>
<th>UNIT MODEL</th>
<th>UNIT SIZE</th>
<th>MIN.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>48FCF/T (High Heat Units Only)</td>
<td>05, 06, 07</td>
<td>11.0 in. wg (2740 Pa)</td>
<td>13.0 in. wg (3240 Pa)</td>
</tr>
</tbody>
</table>

Table 3 — Natural Gas Supply Line Pressure Ranges

<table>
<thead>
<tr>
<th>UNIT MODEL</th>
<th>UNIT SIZE</th>
<th>MIN.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>48FCF/T (High Heat Units Only)</td>
<td>05, 06, 07</td>
<td>11.0 in. wg (2740 Pa)</td>
<td>13.0 in. wg (3240 Pa)</td>
</tr>
</tbody>
</table>

The gas supply pipe enters the unit at the burner access panel on the front side of the unit, through the long slot at the bottom of the access panel. The gas connection to the unit is made to the 1/2-in. FPT gas inlet port on the unit gas valve. Manifold pressure is factory-adjusted for natural gas fuel use. Adjust as required to obtain best flame characteristics. See Table 5.

Manifold pressure for LP fuel use must be adjusted to specified range. Follow instructions in the accessory kit to make initial readjustment, see Table 6.

Install a gas supply line that runs to the unit heating section. Refer to the NFPA 54/NFGC or equivalent code for gas pipe sizing data. Do not use a pipe size smaller than 1/2-inch. Size the gas supply line to allow for a maximum pressure drop of 0.5-in. wg (124 Pa) between gas regulator source and unit gas valve connection when unit is operating at high-fire flow rate. The gas supply line can approach the unit in three ways: horizontally from outside the unit (across the roof), thru-curb/under unit basepan (accessory kit required), or through unit basepan (factory option or accessory kit required). Consult accessory kit installation instructions for details on these installation methods. Observe clearance to gas line components per Fig. 16.

<table>
<thead>
<tr>
<th>UNIT MODEL</th>
<th>UNIT SIZE</th>
<th>MIN.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>48FCF/T (High Heat Units Only)</td>
<td>05, 06, 07</td>
<td>11.0 in. wg (2740 Pa)</td>
<td>13.0 in. wg (3240 Pa)</td>
</tr>
</tbody>
</table>

Table 4 — Liquid Propane Supply Line Pressure Ranges

<table>
<thead>
<tr>
<th>UNIT MODEL</th>
<th>UNIT SIZE</th>
<th>MIN.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>48FCF/T (High Heat Units Only)</td>
<td>05, 06, 07</td>
<td>11.0 in. wg (2740 Pa)</td>
<td>13.0 in. wg (3240 Pa)</td>
</tr>
</tbody>
</table>

The gas supply pipe enters the unit at the burner access panel on the front side of the unit, through the long slot at the bottom of the access panel. The gas connection to the unit is made to the 1/2-in. FPT gas inlet port on the unit gas valve. Manifold pressure is factory-adjusted for natural gas fuel use. Adjust as required to obtain best flame characteristics. See Table 5.

Manifold pressure for LP fuel use must be adjusted to specified range. Follow instructions in the accessory kit to make initial readjustment, see Table 6.

Install a gas supply line that runs to the unit heating section. Refer to the NFPA 54/NFGC or equivalent code for gas pipe sizing data. Do not use a pipe size smaller than 1/2-inch. Size the gas supply line to allow for a maximum pressure drop of 0.5-in. wg (124 Pa) between gas regulator source and unit gas valve connection when unit is operating at high-fire flow rate. The gas supply line can approach the unit in three ways: horizontally from outside the unit (across the roof), thru-curb/under unit basepan (accessory kit required), or through unit basepan (factory option or accessory kit required). Consult accessory kit installation instructions for details on these installation methods. Observe clearance to gas line components per Fig. 16.

<table>
<thead>
<tr>
<th>UNIT MODEL</th>
<th>UNIT SIZE</th>
<th>MIN.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>48FCF/T (High Heat Units Only)</td>
<td>05, 06, 07</td>
<td>11.0 in. wg (2740 Pa)</td>
<td>13.0 in. wg (3240 Pa)</td>
</tr>
</tbody>
</table>

Table 5 — Natural Gas Manifold Pressure Ranges

<table>
<thead>
<tr>
<th>UNIT MODEL</th>
<th>UNIT SIZE</th>
<th>MIN.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>48FCF/T (High Heat Units Only)</td>
<td>05, 06, 07</td>
<td>11.0 in. wg (2740 Pa)</td>
<td>13.0 in. wg (3240 Pa)</td>
</tr>
</tbody>
</table>

Table 6 — Liquid Propane Manifold Pressure Ranges

<table>
<thead>
<tr>
<th>UNIT MODEL</th>
<th>UNIT SIZE</th>
<th>MIN.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>48FCF/T (High Heat Units Only)</td>
<td>05, 06, 07</td>
<td>11.0 in. wg (2740 Pa)</td>
<td>13.0 in. wg (3240 Pa)</td>
</tr>
</tbody>
</table>

![Fig. 16 — Gas Piping Guide (with Accessory Thru-the-Curb Service Connections)](image)

FACTORY-OPTION THRU-BASE CONNECTIONS (GAS CONNECTIONS)

This service connection kit consists of a 1/2-in. NPT gas adapter fitting (brass), a 1/2-in. electrical bulkhead connector and a 3/4-in. electrical bulkhead connector, all factory-installed in the embossed (raised) section of the unit basepan in the condenser section. See Fig. 17.

![Fig. 17 — Thru-Base Gas Connection Fittings](image)

CAUTION

EQUIPMENT DAMAGE

Failure to follow this caution may result in equipment damage. When connecting the gas line to the unit gas valve, the installer MUST use a backup wrench to prevent damage to the valve.

Install a gas supply line that runs to the unit heating section. Refer to the NFPA 54/NFGC or equivalent code for gas pipe sizing data. Do not use a pipe size smaller than 1/2-inch. Size the gas supply line to allow for a maximum pressure drop of 0.5-in. wg (124 Pa) between gas regulator source and unit gas valve connection when unit is operating at high-fire flow rate. The gas supply line can approach the unit in three ways: horizontally from outside the unit (across the roof), thru-curb/under unit basepan (accessory kit required), or through unit basepan (factory option or accessory kit required). Consult accessory kit installation instructions for details on these installation methods. Observe clearance to gas line components per Fig. 16.
Fig. 18 — Gas Line Piping for 3 to 6 Ton Units

Other hardware required to complete the installation of the gas supply line includes a manual shutoff valve, a sediment trap (drip leg) and a ground-joint union. A pressure regulator valve may also be required (to convert gas pressure from pounds to inches of pressure). The manual shutoff valve must be located within 6 ft (1.83 m) of the unit. The union, located in the final leg entering the unit, must be located at least 9-in. (230 mm) away from the access panel to permit the panel to be removed for service. If a regulator valve is installed, it must be located a minimum of 4 ft (1220 mm) away from the unit’s flue outlet. Some municipal codes require that the manual shutoff valve be located upstream of the sediment trap. See Fig. 19 and 20 for typical piping arrangements for gas piping that has been routed through the sidewall of the curb. See Fig. 21 for typical piping arrangement when thru-base is used. Ensure that all piping does not block access to the unit’s main control box or limit the required working space in front of the control box.

Fig. 19 — Gas Piping, Typical Curb Sidewall Piping (Example 1)

Fig. 20 — Gas Piping, Typical Curb Sidewall Piping (Example 2)

Fig. 21 — Gas Piping, Typical Thru-Base Connections

When installing the gas supply line, observe local codes pertaining to gas pipe installations. Refer to the NFPA 54/ANSI Z223.1 NFGC latest edition (in Canada, CAN/CSA B149.1). In the absence of local building codes, adhere to the following pertinent recommendations:

- Avoid low spots in long runs of pipe. Grade all pipe 1/4 in. per every 15 ft (7 mm per every 5 m) to prevent traps. Grade all horizontal runs downward to risers. Use risers to connect to heating section and to meter.

- Protect all segments of piping system against physical and thermal damage. Support all piping with appropriate straps, hangers, etc. Use a minimum of one hanger every 6 ft (1.8 m). For pipe sizes larger than 1/2-in., follow recommendations of national codes.

- Apply joint compound (pipe dope) sparingly and only to male threads of joint when making pipe connections. Use only pipe dope that is resistant to action of liquefied petroleum gases as specified by local and/or national codes. If using PTFE (Teflon) tape, ensure the material is Double Density type and is labeled for use on gas lines. Apply tape per manufacturer’s instructions.

- Pressure-test all gas piping in accordance with local and national plumbing and gas codes before connecting piping to unit.

1. Teflon is a registered trademark of DuPont.
NOTE: Pressure test the gas supply system after the gas supply piping is connected to the gas valve. The supply piping must be disconnected from the gas valve during the testing of the piping systems when test pressure is in excess of 0.5 psig (3450 Pa). Pressure test the gas supply piping system at pressures equal to or less than 0.5 psig (3450 Pa). The unit heating section must be isolated from the gas piping system by closing the external main manual shutoff valve and slightly opening the ground-joint union.

Check for gas leaks at the field-installed and factory-installed gas lines after all piping connections have been completed. Use soap-and-water solution (or method specified by local codes and/or regulations).

WARNING

Failure to follow this warning could result in personal injury, death and/or property damage.

- Connect gas pipe to unit using a backup wrench to avoid damaging gas controls.
- Never purge a gas line into a combustion chamber.
- Never test for gas leaks with an open flame. Use a commercially available soap solution made specifically for the detection of leaks to check all connections.
- Use proper length of pipe to avoid stress on gas control manifold.

NOTE: If orifice hole appears damaged or it is suspected to have been redrilled, check orifice hole with a numbered drill bit of correct size. Never redrill an orifice. A burr-free and squarely aligned orifice hole is essential for proper flame characteristics. See Fig. 22.

![Fig. 22 — Orifice Hole](image)

Step 12 — Install External Condensate Trap and Line

The unit has one 3/4-in. condensate drain connection on the end of the condensate pan and an alternate connection on the bottom. See Fig. 23. Unit airflow configuration does not determine which drain connection to use. Either drain connection can be used with vertical or horizontal applications.

When using the standard side drain connection, ensure the red plug in the alternate bottom connection is tight. Do this before setting the unit in place. The red drain pan can be tightened with a 1/2-in. square socket drive extension.

To use the alternate bottom drain connection, remove the red drain plug from the bottom connection (use a 1/2-in. square socket drive extension) and install it in the side drain connection. The piping for the condensate drain and external trap can be completed after the unit is in place. See Fig. 24.

![Fig. 23 — Condensate Drain Pan (Side View)](image)

Step 13 — Make Electrical Connections

WARNING

Failure to follow this warning could result in personal injury or death.

Do not use gas piping as an electrical ground.

Unit cabinet must have an uninterrupted, unbroken electrical ground to minimize the possibility of personal injury if an electrical fault should occur. This ground may consist of electrical wire connected to unit ground lug in control compartment, or conduit approved for electrical ground when installed in accordance with NEC (National Electrical Code); ANSI/NFPA 70, latest edition (in Canada, Canadian Electrical Code CSA [Canadian Standards Association] C22.1), and local electrical codes.

NOTE: Field-supplied wiring shall conform with the limitations of minimum 63°F (33°C) rise.

FIELD POWER SUPPLY

If equipped with optional Powered Convenience Outlet, the power source leads to the convenience outlet’s transformer primary are not factory connected. Installer must connect these leads according to required operation of the convenience outlet. If an always-energized convenience outlet operation is desired, connect the source leads to the line side of the unit-mounted disconnect. (Check with local codes to ensure this method is acceptable in your area.) If a de-energize via unit disconnect switch...
operation of the convenience outlet is desired, connect the source leads to the load side of the unit disconnect. On a unit without a unit-mounted disconnect, connect the source leads to compressor contactor C and indoor fan contactor IFC pressure lugs with unit field power leads. See Convenience Outlets on page 17 for power transformer connections.

The field power wires are connected to the unit at line-side pressure lugs on compressor contactor C and indoor fan contactor IFC (see wiring diagram label for control box component arrangement) or at factory-installed option non-fused disconnect switch or HACR. Maximum wire size is #2ga AWG (copper only) per pole on contactors and #2ga AWG (copper only) per pole on optional disconnect or HACR. See Fig. 25 and unit label diagram for field power wiring connections.

NOTE: Unit may be equipped with short test leads (pigtails) on the field line connection points on contactor C or optional disconnect switch. These leads are for factory-run test purposes only; remove and discard before connecting field power wires to unit connection points. Make field power connections directly to line connection pressure lugs only.

WARNING

FIRE HAZARD

Failure to follow this warning could result in intermittent operation or performance satisfaction.

Do not connect aluminum wire between disconnect switch and unit. Use only copper wire.

Units Without Non-Fused Disconnect Option

<table>
<thead>
<tr>
<th>TB</th>
<th>TB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Units With Non-Fused Disconnect Option

<table>
<thead>
<tr>
<th>L1</th>
<th>L2</th>
<th>L3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connect field power supply conductors to LINE side terminals when the switch enclosure cover is removed to attach the handle. Assemble the shaft and handle to the switch at this point. Discard the factory test leads (see Fig. 25).

Field-Install the NFD Shaft and Handle

1. Remove the Control Box access panel. The NFD enclosure is located below the Control Box (see Fig. 27).
2. Remove (3) cap head screws that secure the NFD enclosure front cover — (2) on the face of the cover and (1) on the left side cover. See Fig. 28.
3. Remove the front cover of the NFD enclosure.
4. Make sure the NFD shipped from the factory is at OFF position (the arrow on the black handle knob is at OFF).
5. Insert the shaft with the cross pin on the top of the shaft in the horizontal position. See Fig. 28.
6. Measure from the tip of the shaft to the top surface of the black pointer; the measurement should be 3.75 to 3.88 in. (95 to 99 mm).
7. Tighten the locking screw to secure the shaft to the NFD.
8. Turn the handle to the OFF position with red arrow pointing at OFF.
9. Install the handle on to the painted cover horizontally with the red arrow pointing to the left.
10. Secure the handle to the painted cover with (2) screws and lock washers supplied.
11. Engaging the shaft into the handle socket, re-install (3) hex screws on the NFD enclosure.
12. Re-install the unit front panel.
When installing units, provide a disconnect switch per NEC (National Electrical Code) of adequate size. Disconnect sizing data is provided on the unit informative plate. Locate on unit cabinet or within sight of the unit per national or local codes. Do not cover unit informative plate if mounting the disconnect on the unit cabinet.

ALL UNITS

All field wiring must comply with NEC and all local codes. Size wire based on MCA (Minimum Circuit Amps) on the unit informative plate. See Fig. 25 and the unit label diagram for power wiring connections to the unit power terminal blocks and equipment ground. Maximum wire size is #2ga AWG (copper only) per pole on contactors. See Fig. 25 and unit label diagram for field power wiring connections.

Provide a ground fault and short circuit over-current protection device (fuse or breaker) per NEC Article 440 (or local codes). Refer to unit informative data plate for MOCP (Maximum Over-Current Protection) device size.

All units except 208/230v units are factory wired for the voltage shown on the nameplate. If the 208/230v unit is to be connected to a 208v power supply, the control transformer must be rewired by moving the black wire with the 1/8-in. female spade connector from the 230v connection and moving it to the 200v 1/8-in. male terminal on the primary side of the transformer. Refer to unit label diagram for additional information. Field power wires will be connected at line-side pressure lugs on the power terminal block or at factory-installed option non-fused disconnect.

Voltage to compressor terminals during operation must be within voltage range indicated on unit nameplate. On 3-phase units, voltages between phases must be balanced within 2% and the current within 10%. Use the formula shown in the example below to determine the percent of voltage imbalance. Operation on improper line voltage or excessive phase imbalance constitutes abuse and may cause damage to electrical components. Such operation would invalidate any applicable Carrier warranty.

\[
\text{% VOLTAGE IMBALANCE} = 100 \times \frac{\text{max voltage deviation from average voltage}}{\text{average voltage}}
\]

EXAMPLE: SUPPLY VOLTAGE IS 230-3-60

\[
\begin{align*}
AB &= 224 \text{v} \\
BC &= 231 \text{v} \\
AC &= 226 \text{v}
\end{align*}
\]

\[
\text{Average Voltage} = \frac{(224 + 231 + 226)}{3} = \frac{681}{3} = 227
\]

DETERMINE MAXIMUM DEVIATION FROM AVERAGE VOLTAGE.

\[
\begin{align*}
(AB) 227-224 &= 3 \text{V} \\
(BC) 231-227 &= 4 \text{V} \\
(AC) 227-226 &= 1 \text{V}
\end{align*}
\]

MAXIMUM DEVIATION IS 4 V.

DETERMINE PERCENT OF VOLTAGE IMBALANCE.

\[
\text{% Voltage Imbalance} = 100 \times \frac{4}{227} = 1.78\%
\]

NOTE: Check all factory and field electrical connections for tightness.

CONVENIENCE OUTLETS

Two types of convenience outlets are offered on 48FC models: non-powered and unit-powered. Both types provide a 125-volt power supply.

WARNING

ELECTRICAL OPERATION HAZARD

Failure to follow this warning could result in personal injury or death.

Units with convenience outlet circuits may use multiple disconnects. Check convenience outlet for power status before opening unit for service. Locate its disconnect switch, if appropriate, and open it. Lock-out and tag-out this switch, if necessary.

Two types of convenience outlets are offered on 48FC models: non-powered and unit-powered. Both types provide a 125-volt power supply.
GFCI (ground-fault circuit interrupter) duplex receptacle rated at 15A behind a hinged waterproof access cover, located on the end panel of the unit. See Fig. 29.

Figure 30 shows the Convenience Outlet Utilization label, which is located below the convenience outlet.

Figure 30 — Convenience Outlet Utilization Notice Label

NOTE: Unit powered convenience outlets are not available as factory installed options for single phase (-3 voltage code models).

Installing Weatherproof Cover

A weatherproof while-in-use cover for the factory-installed convenience outlets is now required by UL standards. This cover cannot be factory-mounted due its depth; it must be installed at unit installation. For shipment, the convenience outlet is covered with a blank cover plate.

On units with electro-mechanical controls the weatherproof cover kit is shipped in the unit’s control box. The kit includes the hinged cover, a backing plate, and gasket. On units with a factory installed direct digital controller (SystemVu™ or RTU Open) the weatherproof cover kit is secured to the basepan underneath the control box (see Fig. 31).

1. Remove the blank cover plate at the convenience outlet; discard the blank cover.
2. Loosen the two screws at the GFCI duplex outlet, until approximately 1/2 in. (13 mm) under screw heads is exposed. Press the gasket over the screw heads.
3. Slip the backing plate over the screw heads at the keyhole slots and align with the gasket; tighten the two screws until snug (do not over-tighten).
4. Mount the weatherproof cover to the backing plate as shown in Fig. 32.
5. Remove two slot fillers in the bottom of the cover to permit service tool cords to exit the cover.
6. Check for full closing and latching.

Non-Powered Convenience Outlet

This type requires the field installation of a general-purpose 125-v 15A circuit powered from a source elsewhere in the building. Observe national and local codes when selecting wire size, fuse or breaker requirements, and disconnect switch size and location. Route 125v power supply conductors into the bottom of the utility box containing the duplex receptacle.
Unit-Powered Convenience Outlet

A unit-mounted transformer is factory-installed to step down the main power supply voltage to the unit to 115v at the duplex receptacle. This option also includes a manual switch with fuse, located in a utility box and mounted on a bracket behind the convenience outlet; access is through the unit’s control box access panel. See Fig. 29.

The primary leads to the convenience outlet transformer are not factory-connected. Selection of primary power source is a customer option. If local codes permit, the transformer primary leads can be connected at the line-side terminals on the unit-mounted non-fused disconnect switch; this will provide service power to the unit when the unit disconnect switch is open. Other connection methods will result in the convenience outlet circuit being de-energized when the unit disconnect switch is open. See Fig. 33.

![Schematic - Convenience Outlet Wiring](image)

Fuse On Power Type

The factory fuse is a Bussman¹ “Fusetron” T-15, non-renewable screw-in (Edison base) type plug fuse. Test the GFCI receptacle by pressing the TEST button on the face of the receptacle to trip and open the receptacle. Check for proper grounding wires and power line phasing if the GFCI receptacle does not trip as required. Press the RESET button to clear the tripped condition.

Using Unit-Mounted Convenience Outlets

Units with unit-mounted convenience outlet circuits will often require that two disconnects be opened to de-energize all power to the unit. Treat all units as electrically energized until the convenience outlet power is also checked and de-energization is confirmed. Observe National Electrical Code Article 210, Branch Circuits, for use of convenience outlets.

¹ Bussman and Fusetron are trademarks of Cooper Technologies Company.

FACTORY-OPTION THRU-BASE CONNECTIONS (ELECTRICAL CONNECTIONS)

This service connection kit consists of a 1/2-in. NPT gas adapter fitting (brass), a 1/2-in. electrical bulkhead connector, and a 3/4-in. electrical bulkhead connector, all factory-installed in the embossed (raised) section of the unit basepan in the condenser section. The 3/4-in. bulkhead connector enables the low-voltage control wires to pass through the basepan. The 1/2-in. electrical bulkhead connector allows the high-voltage power wires to pass through the basepan. See Fig. 17 on page 13.

Check tightness of connector lock nuts before connecting electrical conduits.

Field-supplied and field-installed liquid tight conduit connectors and conduit may be attached to the connectors on the basepan. Pull correctly rated high voltage and low voltage through appropriate conduits. Connect the power conduit to the internal disconnect (if unit is so equipped) or to the external disconnect (through unit side panel). A hole must be field cut in the main control box bottom on the left side so the 24-v control connections can be made. Connect the control power conduit to the unit control box at this hole.

UNITS WITHOUT THRU-BASE CONNECTIONS (ELECTRICAL CONNECTIONS)

1. Install power wiring conduit through side panel openings.

 Install conduit between disconnect and control box.

2. Install power lines to terminal connections as shown in Fig. 25 on page 16.

FIELD CONTROL WIRING

The 48FC unit requires an external temperature control device. This device can be a thermostat (field-supplied) or a SystemVu™ controller (available as factory-installed option for use on a Carrier Comfort Network® or as a stand alone control) or the RTU Open Controller for Building Management Systems using non-CCN protocols (RTU Open controller is available as a factory-installed option only).

THERMOSTAT

Install a Carrier-approved accessory thermostat according to installation instructions included with the accessory. For complete economizer function, select a two-stage cooling thermostat. Locate the thermostat accessory on a solid wall in the conditioned space to sense average temperature in accordance with the thermostat installation instructions. Typical low-voltage connections are shown in Fig. 34.

If the thermostat contains a logic circuit requiring 24-v power, use a thermostat cable or equivalent single leads of different colors with minimum of seven leads. If the thermostat does not require a 24-v source (no “C” connection required), use a thermostat cable or equivalent with minimum of six leads. Check the thermostat installation instructions for additional features which might require additional conductors in the cable.

For wire runs up to 50 ft (15 m), use no. 18 AWG (American Wire Gage) insulated wire [95°F (35°C) minimum]. For 50 to 75 ft (15 to 23 m), use no. 16 AWG insulated wire [95°F (35°C) minimum]. For over 75 ft (23 m), use no. 14 AWG insulated wire [95°F (35°C) minimum]. Wire sizes larger than no. 18 AWG cannot be directly connected to the thermostat and will require a junction box and splice at the thermostat.
Pass the thermostat control wires through the hole provided in the corner post; then feed the wires through the raceway built into the corner post to the control box. Pull the wires over to the terminal strip on the upper-left corner of the Unit Control Board. See Fig. 35.

NOTE: If thru-the-bottom connections accessory is used, refer to the accessory installation instructions for information on routing power and control wiring.

Fig. 34 — Low-Voltage Thermostat Connections

Thermostat Wiring, Units Without Thru-Base Connection Kit

Pass the thermostat control wires through the hole provided in the corner post; then feed the wires through the raceway built into the corner post to the control box. Pull the wires over to the terminal strip on the upper-left corner of the Unit Control Board. See Fig. 35.

NOTE: If thru-the-bottom connections accessory is used, refer to the accessory installation instructions for information on routing power and control wiring.

Fig. 35 — Field Control Wiring Raceway

HEAT ANTICIPATOR SETTINGS

Set heat anticipator settings at 0.14 amp for the first stage and 0.14 amp for second-stage heating, when available.

HUMIDI-MIZER® CONTROL CONNECTIONS

Humidi-Mizer Space RH Controller

NOTE: The Humidi-Mizer system is a factory-installed option. Humidi-Mizer system is not available for single phase (-3 voltage code) models.

The Humidi-Mizer dehumidification system requires a field-supplied and field-installed space relative humidity control device. This device may be a separate humidistat control (contact closes on rise in space RH above control setpoint) or a combination thermostat-humidistat control device such as Carrier’s Edge Pro Thermidistat device with isolated contact set for dehumidification control. See Fig. 36 and Fig. 37. The humidistat is normally used in applications where a temperature control is already provided (units with SystemVu™ control).

Fig. 36 — Accessory Field-Installed Humidistat

Fig. 37 — Edge Pro Thermidistat
Connecting the Carrier Humidistat (HL38MG029)
1. Route the humidistat 2-conductor cable (field-supplied) through the hole provided in the unit corner post.
2. Feed wires through the raceway built into the corner post (see Fig. 35) to the 24v barrier located on the left side of the control box. The raceway provides the UL-required clearance between high-voltage and low-voltage wiring.
3. Connect one of the leads from the 2-conductor cable to the HUM terminal on the UCB (Unit Control Board). Connect the other lead to the R terminal on the UCB. See Fig. 38.

Fig. 38 — Humidistat Connections to UCB

Connecting the Thermidistat device (33CS2PPRH-01)
1. Route the Thermidistat multi-conductor thermostat cable (field-supplied) through the hole provided in the unit corner post.
2. Feed wires through the raceway built into the corner post (see Fig. 35) to the 24-v barrier located on the left side of the control box. The raceway provides the UL-required clearance between high-voltage and low-voltage wiring.
3. The Thermidistat has dry contacts at terminals D1 and D2 for dehumidification operation (see Fig. 39). Connect D1 to the R terminal on the UCB. Connect D2 to the HUM terminal on the UCB. Refer to the installation instructions included with the Carrier Edge® Pro Thermidistat device for more information.

TYPICAL UNIT WIRING DIAGRAMS
See Fig. 40 - 42 for examples of typical unit control and power wiring diagrams. These wiring diagrams are mounted on the inside of the unit control box cover.
Fig. 40 — Typical Control Wiring Diagram Electro-Mechanical with W7212 (48FC 04-06 208-230/3/60 Unit Shown)
Fig. 41 — Typical Electro-Mechanical with W7220 Control Wiring Diagram (48FC 07 208-230/3/60 Unit Shown)
Fig. 42 — Typical 48FC 04-07 Power Wiring Diagram, 208-230V Unit Shown
Integrated Gas Controller

This unit contains an Integrated Gas Controller (IGC) board. The IGC control board uses a flue gas pressure switch that senses pressure drop in the heat exchanger due to the combustion inducer. See Fig. 43.

When the thermostat calls for heating, power is sent to W on the Integrated Gas Controller (IGC) board. An LED (light emitting diode) on the IGC board turns on and remains on during normal operation. A check is made to ensure that the rollout switch and limit switch are closed, and that the pressure switch is open. If the check was successful, the induced draft motor is energized. When the pressure in the heat exchanger is low enough to close the pressure switch, the ignition activation period begins. Once ignition occurs, the IGC board will continue to monitor the condition of the rollout switch, the limit switches, the pressure switch, and the flame sensor. Assuming the unit is controlled through a room thermostat set for “fan auto,” 45 seconds after ignition occurs, the indoor fan motor will energize, and the outdoor air dampers will open to their minimum position. If the “over temperature limit” opens prior to the start of the indoor fan blower, the IGC will shut down the burners, and the control will shorten the 45 second delay to 5 seconds less than the time to trip the limit. For example, if the limit trips at 37 seconds, the control will change the “fan on delay” from 45 seconds to 32 seconds. Once the “fan on delay” has been modified, it will not change back to 45 seconds unless power is reset to the control. On units with 2 stages of heat, W2 closes and initiates power to the second stage of the main gas valve when additional heat is required.

When the thermostat is satisfied, W1 and W2 open and the gas valve closes, interrupting the flow of gas to the main burners. If the call for W1 lasted less than 1 minute, the heating cycle will not terminate until 1 minute after W1 became active. If the unit is controlled through a room thermostat set for fan auto, the indoor fan motor will continue to operate for an additional 45 seconds, then stop. An LED indicator is provided on the IGC to monitor operation.

See Fig. 44 for IGC board component layout. Fig. 45 is a typical IGC control wiring diagram.
EconoMi$er® X (Factory Option)

The EconoMi$er X system is an expandable economizer control system, which includes a W7220 economizer module (controller) with an LCD and keypad (see Fig. 46). The W7220 can be configured with optional sensors.

Fig. 45 — Typical IGC Control Wiring Diagram

Fig. 46 — W7220 Economizer Module

The W7220 economizer module can be used as a stand-alone economizer module wired directly to a commercial set-back space thermostat and sensors to provide outside air dry-bulb economizer control.

The W7220 economizer module can be connected to optional sensors for single or differential enthalpy control. The W7220 economizer module provides power and communications for the sensors.

The W7220 economizer module automatically detects sensors by polling to determine which sensors are present. If a sensor loses communications after it has been detected, the W7220 economizer controller indicates a device fail error on its LCD.

SYSTEM COMPONENTS

The EconoMi$er X system includes an economizer module, 20k mixed air sensor, damper actuator, and either a 20k outdoor air temperature sensor or S-Bus enthalpy sensors.

Economizer Module

The module is the core of the EconoMi$er X system. The module is mounted in the unit’s control box, and includes the user interface for the system. The W7220 economizer module provides the basic inputs and outputs to provide simple economizer control. When used with the optional sensors, the economizer module provides more advanced economizer functionality.

S-Bus Enthalpy Control Sensors

The sensor is a combination temperature and humidity sensor which is powered by and communicates on the S-Bus. Up to three sensors may be configured with the W7220 economizer module.

CO₂ Sensor (optional)

The CO₂ sensor can be added for Demand Controlled Ventilation (DCV).

SPECIFICATIONS

W7220 Economizer Module

- **Rated Voltage** — 20 to 30 vac RMS, 50/60 Hz
- **Transformer** — 100 va maximum system input
- **Nominal Power Consumption (at 24 vac, 60 Hz)** — 11.5 VA without sensors or actuators
- **Relay Digital Output Rating at 30 vac (maximum power from Class 2 input only)** — 1.5A run: 3.5A inrush at 0.45PF (200,000 cycles) or 7.5A inrush at 0.45PF (100,000 cycles)
- **External Sensors Power Output** — 21 vdc ± 5% at 48mA

User Interface

Provides status for normal operation, setup parameters, checkout tests, and alarm and error conditions with a 2-line 16 character LCD display and four button keypad.

Electrical

- Rated Voltage — 20 to 30 vac RMS, 50/60 Hz
- Transformer — 100 va maximum system input
- Nominal Power Consumption (at 24 vac, 60 Hz) — 11.5 VA without sensors or actuators
- Relay Digital Output Rating at 30 vac (maximum power from Class 2 input only) — 1.5A run: 3.5A inrush at 0.45PF (200,000 cycles) or 7.5A inrush at 0.45PF (100,000 cycles)
- External Sensors Power Output — 21 vdc ± 5% at 48mA

IMPORTANT: All inputs and outputs must be Class 2 wiring.
INPUTS

Sensors

NOTE: A Mixed Air (MA) analog sensor is required on all W7220 units; either an Outdoor Air (OA) sensor for dry bulb change over or an OA bus sensor for outdoor enthalpy change over is required in addition to the MA sensor. An additional Return Air (RA) bus sensor can be added to the system for differential enthalpy or dry bulb changeover. For differential dry bulb changeover, a 20k ohm sensor is required in the OA and a bus sensor in the RA. DIP switch on RA bus sensor must be set in the RA position.

Dry Bulb Temperature (optional) and Mixed Air (required), 20k NTC

2-wire (18 to 22 AWG);
Temperature range –40°F to 150°F (–40°C to 66°C)
Temperature accuracy: 0°F/±2°F

Temperature and Humidity, C7400S1000 (optional)

S-Bus; 2-wire (18 to 22 AWG)
Temperature: range –40°F to 150°F (–40°C to 65°C)
Temperature accuracy: 0°F/±2°F (–18°C/–17°C)
Humidity: range 0 to 100% RH with 5% accuracy.

NOTE: Up to three (3) S-Bus sensors may be connected to the W7220 economizer module for outdoor air (OA), return air (RA) and discharge (supply) air (DA).

4 Binary Inputs

1-wire 24 vac + common GND (see page 28 for wiring details).
24 vac power supply
20 to 30 vac 50/60Hz; 100 VA Class 2 transformer.

OUTPUTS

Actuator Signal

2 to 10 vdc; minimum actuator impedance is 2k ohm; bus two-wire output for bus communicating actuators.

Exhaust fan, Y1, Y2 and AUX O

All Relay Outputs (at 30 vac):
Running: 1.5A maximum
Inrush: 7.5A maximum

ENVIRONMENTAL

Operating Temperature

–40°F to 150°F (–40°C to 65°C).
Exception of display operation down to –4°F (–20°C) with full recovery at –4°F (–20°C) from exposure to –40°F (–40°C)

Storage Temperature

–40°F to 150°F (–40°C to 65°C)

Shipping Temperature

–40°F to 150°F (–40°C to 65°C)

Relative Humidity

5% to 95% RH non-condensing

ECONOMIZER MODULE WIRING DETAILS

Use Fig. 47 and Tables 7 and 8 to locate the wiring terminals for the Economizer module.

NOTE: The four terminal blocks are removable. Slide out each terminal block, wire it, and then slide it back into place.
The labels on the sensors and controller are color coded for ease of installation. Orange labeled sensors can only be wired to orange terminals on the controller. Brown labeled sensors can only be wired to S-bus (brown) terminals. Use Fig. 48 and Table 9 to locate the wiring terminals for each S-Bus and enthalpy control sensor.

Table 8 — Economizer Module (Right Hand Terminal Blocks)

<table>
<thead>
<tr>
<th>LABEL</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUX2 I</td>
<td>24 vac IN</td>
<td>The first terminal is not used.</td>
</tr>
<tr>
<td>OCC</td>
<td>24 vac IN</td>
<td>Shut Down (SD) or HEAT (W) Conventional only and Heat Pump Changeover (O-B) in Heat Pump mode.</td>
</tr>
<tr>
<td>E-GND</td>
<td>E-GND</td>
<td>Occupied/Unoccupied Input</td>
</tr>
<tr>
<td>EXH1</td>
<td>24 vac OUT</td>
<td>Exhaust Fan 1 Output</td>
</tr>
</tbody>
</table>

Table 9 — HH57AC081 Sensor Wiring Terminations

<table>
<thead>
<tr>
<th>TERMINAL NUMBER</th>
<th>LABEL</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S-BUS</td>
<td>S-BUS</td>
<td>S-BUS Communications (Enthalpy Control Sensor Bus)</td>
</tr>
<tr>
<td>2</td>
<td>S-BUS</td>
<td>S-BUS</td>
<td>S-BUS Communications (Enthalpy Control Sensor Bus)</td>
</tr>
</tbody>
</table>

Use Fig. 48 and Table 10 to set the DIP switches for the desired use of the sensor.

Table 10 — HH57AC081 Sensor DIP Switch

<table>
<thead>
<tr>
<th>USE</th>
<th>DIP SWITCH POSITIONS FOR SWITCHES 1, 2, AND 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>DA</td>
<td>OFF</td>
</tr>
<tr>
<td>RA</td>
<td>ON</td>
</tr>
<tr>
<td>OA</td>
<td>OFF</td>
</tr>
</tbody>
</table>

NOTE: When an S-Bus sensor is connected to an existing network, it will take 60 minutes for the network to recognize and auto-configure itself to use the new sensor. During the 60-minute setup period, no alarms for sensor failures (except SAT) will be issued and no economizing function will be available.

CO₂ Sensor Wiring

When using a CO₂ sensor, the black and brown common wires are internally connected and only one is connected to “IAQ COM” on the W7220. Use the power from the W7220 to power the CO₂ sensor OR make sure the ground for the power supplies are common. See Fig. 49 for CO₂ sensor wiring.

INTERFACE OVERVIEW

This section describes how to use the EconoMi$er® X user interface for:
- Keypad and menu navigation
- Settings and parameter changes
- Menu structure and selection

User Interface

The user interface consists of a 2-line LCD display and a 4-button keypad on the front of the economizer controller.

Keypad

Use the four navigation buttons (see Fig. 50) to scroll through the menus and menu items, select menu items, and to change parameter and configuration settings.
To use the keypad when working with menus:

- Press the ▲ (Up arrow) button to move to the previous menu.
- Press the ▼ (Down arrow) button to move to the next menu.
- Press the ■ (Enter) button to display the first item in the currently displayed menu.
- Press the ◄ (Menu Up/Exit) button to exit a menu’s item and return to the list of menus.

Fig. 50 — W7220 Controller Navigation Buttons

To use the keypad when working with Setpoints, System and Advanced Settings, Checkout tests and Alarms:

1. Navigate to the desired menu.
2. Press the ■ (Enter) button to display the first item in the currently displayed menu.
3. Use the ▲ and ▼ buttons to scroll to the desired parameter.
4. Press the ■ (Enter) button to display the value of the currently displayed item.
5. Press the ▲ button to increase (change) the displayed parameter value.
6. Press the ▼ button to decrease (change) the displayed parameter value.

NOTE: When values are displayed, pressing and holding the ▲ or ▼ button causes the display to automatically increment or decrement.

1. Press the ■ (Enter) button to accept the displayed value and store it in nonvolatile RAM. “CHANGE STORED” displays.
2. Press the ◄ (Enter) button to return to the current menu parameter.
3. Press the ◄ (Menu Up/Exit) button to return to the previous menu.

Menu Structure

Table 11 illustrates the complete hierarchy of menus and parameters for the EconoMi$er® X system.

The Menus in display order are:

- STATUS
- SETPOINTS
- SYSTEM SETUP
- ADVANCED SETUP
- CHECKOUT
- ALARMS

NOTE: Some parameters in the menus use the letters MA or MAT, indicating a mixed air temperature sensor location before the cooling coil. This unit application has the control sensor located after the cooling coil, in the fan section, where it is designated as (Cooling) Supply Air Temperature or SAT sensor.

SETUP AND CONFIGURATION

Before being placed into service, the W7220 Economizer module must be set up and configured for the installed system.

IMPORTANT: During setup, the economizer module is live at all times.

The setup process uses a hierarchical menu structure that is easy to use. Press the ▲ and ▼ arrow buttons to move forward and backward through the menus and press the button to select and confirm setup item changes.

Time-Out and Screensaver

When no buttons have been pressed for 10 minutes, the LCD displays a screen saver, which cycles through the Status items. Each Status item displays in turn and cycles to the next item after 5 seconds.
<table>
<thead>
<tr>
<th>MENU</th>
<th>PARAMETER</th>
<th>PARAMETER DEFAULT VALUE</th>
<th>PARAMETER RANGE AND INCREMENT†</th>
<th>EXPANDED PARAMETER NAME</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ECON AVAIL</td>
<td>NO</td>
<td>YES/NO</td>
<td>FIRST STAGE COOLING DEMAND (Y1–IN)</td>
<td>YES = economizing available; the system can use outside air for free cooling when required</td>
</tr>
<tr>
<td></td>
<td>ECONOMIZING</td>
<td>NO</td>
<td>YES/NO</td>
<td>FIRST STAGE COOLING RELAY OUTPUT</td>
<td>YES = outside air being used for first stage cooling</td>
</tr>
<tr>
<td></td>
<td>OCCUPIED</td>
<td>NO</td>
<td>YES/NO</td>
<td>OCCUPIED</td>
<td>YES = OCC signal received from space thermostat or unitary controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>YES = 24 vac on terminal OCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NO = 0 vac on terminal OCC</td>
</tr>
<tr>
<td></td>
<td>HEAT PUMP</td>
<td>N/A**</td>
<td>COOL</td>
<td>HEAT PUMP MODE</td>
<td>Displays COOL or HEAT when system is set to heat pump (Non-conventional)</td>
</tr>
<tr>
<td></td>
<td>COOL Y1—IN</td>
<td>OFF</td>
<td>ON/OFF</td>
<td>FIRST STAGE COOLING DEMAND (Y1–IN)</td>
<td>Y1–I signal from space thermostat or unitary controller for cooling stage 1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ON/OFF</td>
<td></td>
<td>ON = 24 vac on terminal Y1–I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OFF = 0 vac on terminal Y1–I</td>
</tr>
<tr>
<td></td>
<td>COOL Y1—OUT</td>
<td>OFF</td>
<td>ON/OFF</td>
<td>FIRST STAGE COOLING RELAY OUTPUT</td>
<td>Cool stage 1 Relay Output to stage 1 mechanical cooling (Y1–OUT terminal)</td>
</tr>
<tr>
<td></td>
<td>COOL Y2—IN</td>
<td>OFF</td>
<td>ON/OFF</td>
<td>SECOND STAGE COOLING DEMAND (Y2–IN)</td>
<td>Y2–I signal from space thermostat or unitary controller for second stage cooling.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ON/OFF</td>
<td></td>
<td>ON = 24 vac on terminal Y2–I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OFF = 0 vac on terminal Y2–I</td>
</tr>
<tr>
<td></td>
<td>COOL Y2—OUT</td>
<td>OFF</td>
<td>ON/OFF</td>
<td>SECOND STAGE COOLING RELAY OUTPUT</td>
<td>Cool Stage 2 Relay Output to mechanical cooling (Y2–OUT terminal)</td>
</tr>
<tr>
<td></td>
<td>MA TEMP</td>
<td>(°F or °C)</td>
<td>–40°F to 150°F; –40°C to 66°C</td>
<td>SUPPLY AIR TEMPERATURE, Cooling Mode</td>
<td>Displays value of measured mixed air from MAT sensor. Displays _ _ . _ _ °F if not connected, short or out of range.</td>
</tr>
<tr>
<td>STATUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DISCHARGE AIR TEMPERATURE, after Heating section</td>
</tr>
<tr>
<td></td>
<td>DA TEMP</td>
<td>(°F or °C)</td>
<td>–40°F to 150°F; –40°C to 66°C</td>
<td>OUTSIDE AIR TEMP</td>
<td>Displays measured value of outdoor air temperature. Displays _ _ . _ _ °F if sensor sends invalid value, short or out of range.</td>
</tr>
<tr>
<td></td>
<td>OA TEMP</td>
<td>(°F or °C)</td>
<td>–40°F to 140°F; –40°C to 60°C</td>
<td>OUTSIDE AIR RELATIVE HUMIDITY</td>
<td>Displays measured value of outdoor humidity from OA Sylk Bus sensor. Displays _ _% if not connected, short or out of range.</td>
</tr>
<tr>
<td></td>
<td>OA HUM</td>
<td>_ _ %</td>
<td>0 to 100%</td>
<td>RETURN AIR TEMPERATURE</td>
<td>Displays measured value of return air temperature from RAT Sylk Bus sensor. Displays _ _ . _ _ °F if sensor sends invalid value, if not connected, short or out of range.</td>
</tr>
<tr>
<td></td>
<td>RA TEMP</td>
<td>(°F or °C)</td>
<td>0°F to 140°F; –18°C to 60°C</td>
<td>RETURN AIR RELATIVE HUMIDITY</td>
<td>Displays measured value of return air humidity from RA Sylk Bus sensor. Displays _ _% if sensor sends invalid value, if not connected, short or out of range.</td>
</tr>
<tr>
<td></td>
<td>RA HUM</td>
<td>_ _ %</td>
<td>0 to 100%</td>
<td>SPACE/RETURN AIR CO₂</td>
<td>Displays value of measured CO₂ from CO₂ sensor. Invalid if not connected, short or out of range. May be adjusted in Advanced menu by Zero offset and Span.</td>
</tr>
<tr>
<td></td>
<td>IN CO₂</td>
<td>_ _ ppm</td>
<td>0 to 2000 ppm</td>
<td>DEMAND CONTROLLED VENTILATION STATUS</td>
<td>Displays ON if above set point and OFF if below set point, and ONLY if a CO₂ sensor is connected.</td>
</tr>
<tr>
<td></td>
<td>DCCV STATUS</td>
<td>N/A</td>
<td>ON/OFF</td>
<td>DAMPER OUT</td>
<td>Displays voltage output to the damper actuator.***</td>
</tr>
<tr>
<td></td>
<td>ACT POS</td>
<td>N/A</td>
<td>0 to 100%</td>
<td>ACTUATOR</td>
<td>Displays actual position of actuator.</td>
</tr>
<tr>
<td></td>
<td>ACT COUNT</td>
<td>N/A</td>
<td>1 to 65,535</td>
<td>ACTUATOR</td>
<td>Displays number of times actuator has cycled. 1 cycle equals 180 degrees of actuator movement in any direction.</td>
</tr>
<tr>
<td></td>
<td>ACTUATOR</td>
<td>N/A</td>
<td>OK/Alarm (on Alarm menu)</td>
<td>EXHAUST STAGE 1 RELAY OUTPUT</td>
<td>Displays ERROR if voltage or torque is below actuator range.</td>
</tr>
<tr>
<td></td>
<td>EXH1 OUT</td>
<td>OFF</td>
<td>ON/OFF</td>
<td></td>
<td>Displays ON when damper position reaches programmed percentage set point. Output of EXH1 terminal: ON = relay closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OFF = relay open</td>
</tr>
<tr>
<td>MENU</td>
<td>PARAMETER</td>
<td>PARAMETER DEFAULT VALUE</td>
<td>PARAMETER RANGE AND INCREMENT</td>
<td>EXPANDED PARAMETER NAME</td>
<td>Notes</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>-------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>STATUS (cont)</td>
<td>EXH2 OUT</td>
<td>OFF</td>
<td>ON/OFF</td>
<td>EXHAUST STAGE 2 RELAY OUTPUT</td>
<td>Output of AUX1 O terminal. Displays ON when damper position reaches programmed percentage set point. ON = 24 vac output OFF = No output Displays only if AUX1 O = EXH2</td>
</tr>
<tr>
<td></td>
<td>ERV</td>
<td>OFF</td>
<td>ON/OFF</td>
<td>ENERGY RECOVERY VENTILATOR</td>
<td>Output of AUX1 O terminal; displays only if AUX1 O = ERV ON = 24 vac output OFF = No Output</td>
</tr>
<tr>
<td></td>
<td>MECH COOL ON or HEAT STAGES ON</td>
<td>0</td>
<td>0, 1, or 2</td>
<td>Displays stage of mechanical cooling that is active. Displays the stage of heat pump heating that is active.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FAN SPEED</td>
<td>N/A</td>
<td>LOW or HIGH</td>
<td>SUPPLY FAN SPEED Displays speed setting of fan on a 2-speed fan unit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W (HEAT IN)</td>
<td>N/A</td>
<td>ON/OFF</td>
<td>HEAT DEMAND STATUS Displays status of heat demand on a 2-speed fan unit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAT SET</td>
<td>53°F (12°C)</td>
<td>38°F to 70°F (3°C to 21°C); increment by 1 degree</td>
<td>SUPPLY AIR SETPOINT The economizer will modulate the OA damper to maintain the mixed air temperature at the set point</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOW T LOCK</td>
<td>32°F (0°C)</td>
<td>–45°F to 80°F (–43°C to 27°C); increment by 1 degree</td>
<td>COMPRESSOR LOW TEMPERATURE LOCKOUT Set point determines outdoor temperature when the mechanical cooling cannot be turned on. Commonly referred to as the Compressor lockout. At or below the set point, the Y1-O and Y2-O will not be energized on the controller.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DRYBLB SET</td>
<td>63°F (17°C)</td>
<td>48°F to 80°F (9°C to 27°C); increment by 1 degree</td>
<td>OA DRY BULB TEMPERATURE CHANGEOVER SETPOINT Dry bulb set point will only appear if using dry bulb changeover. Set point determines where the economizer will assume outdoor air temperature is good for free cooling; e.g.; at 63°F unit will economize at 62°F and below and not economize at 64°F and above. There is a 2°F deadband.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENTH CURVE</td>
<td>ES3</td>
<td>ES1, ES2, ES3, ES4, or ES5</td>
<td>ENTHALPY CHANGEOVER CURVE ES curve will only appear if using enthalpy changeover. Enthalpy boundary “curves” for economizing using single enthalpy. See page 38 for description of enthalpy curves.</td>
<td></td>
</tr>
<tr>
<td>SETPOINTS</td>
<td>DCV SET</td>
<td>1100ppm</td>
<td>500 to 2000 ppm; increment by 100</td>
<td>DEMAND CONTROLLED VENTILATION Displays only if CO2 sensor is connected. Set point for Demand Controlled Ventilation of space. Above the set point, the OA dampers will modulate open to bring in additional OA to maintain a space ppm level below the set point.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIN POS</td>
<td>2.8 V</td>
<td>2 to 10 vdc</td>
<td>VENTILATION MINIMUM POSITION Displays ONLY if a CO2 sensor is NOT connected. With 2-speed fan units, MIN POS L (low speed fan) and MIN POS H (high speed fan) settings are required. Default for MIN POS L is 3.2V and MIN POS H is 2.8V.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VENTMAX</td>
<td>2.8 V</td>
<td>2 to 10 vdc</td>
<td>DVC MAXIMUM DAMPER POSITION Displays only if a CO2 sensor is connected. Used for Vbz (ventilation max cfm) set point. VENTMAX is the same setting as MIN POS would be if unit did not have CO2 sensor. If OA, MA, RA, and CO2 sensors are connected and DCV CAL ENABLE is set to AUTO mode, the OA dampers are controlled by CFM and displays from 100 to 9990 CFM. With 2-speed fan units, VENTMAX L (low speed fan) and VENTMAX H (high speed fan) settings are required. Default for VENTMAX L is 3.2V and VENTMAX H is 2.8V.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VENTMIN</td>
<td>2.25 V</td>
<td>2 to 10 vdc</td>
<td>DVC MINIMUM DAMPER POSITION Displays only if a CO2 sensor is connected. Used for Va (ventilation min cfm) set point. This is the ventilation for less than maximum occupancy of the space. If OA, MA, RA, and CO2 sensors are connected and DCV CAL ENABLE is set to AUTO mode, the OA dampers are controlled by CFM and displays from 100 to 9990 CFM. With 2-speed fan units VENTMIN L (low speed fan) and VENTMIN H (high speed fan) settings are required. Default for VENTMIN L is 2.5V and VENTMIN H is 2.25V.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ERV OAT SP†</td>
<td>32°F (0°C)</td>
<td>0°F to 50°F (–18°C to 10°C); increment by 1 degree</td>
<td>ENERGY RECOVERY VENTILATOR UNIT OUTDOOR AIR TEMPERATURE SETPOINT Only when AUX1 O = ERV</td>
<td></td>
</tr>
</tbody>
</table>

††ERV OAT SP will only appear if using enthalpy changeover.
Table 11 — W7220 Menu Structure* (cont)

<table>
<thead>
<tr>
<th>MENU</th>
<th>PARAMETER</th>
<th>PARAMETER DEFAULT VALUE</th>
<th>PARAMETER RANGE AND INCREMENT</th>
<th>EXPANDED PARAMETER NAME</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SETPOINTS (cont)</td>
<td>EXH1 SET</td>
<td>50%</td>
<td>0 to 100%; increment by 1</td>
<td>EXHAUST FAN STAGE 1 SETPOINT</td>
<td>Set point for OA damper position when exhaust fan 1 is powered by the economizer. With 2-speed fan units, Exh1 L (low speed fan) and Exh1 H (high speed fan) settings are required. Default for Exh1 L is 65% and Exh1 H is 50%.</td>
</tr>
<tr>
<td></td>
<td>EXH2 SET</td>
<td>75%</td>
<td>0 to 100%; increment by 1</td>
<td>EXHAUST FAN STAGE 2 SETPOINT</td>
<td>Set point for OA damper position when exhaust fan 2 is powered by the economizer. Only used when AUX1 O is set to EHX2. With 2-speed fan units, Exh2 L (low speed fan) and Exh2 H (high speed fan) settings are required. Default for Exh2 L is 80% and Exh2 H is 75%.</td>
</tr>
<tr>
<td>INSTALL</td>
<td>01/01/10</td>
<td>N/A</td>
<td>Display order = MM/DD/YY</td>
<td>Setting order = DD, MM, then YY.</td>
<td></td>
</tr>
<tr>
<td>UNITS DEG</td>
<td>°F</td>
<td>°F or °C</td>
<td>Sets economizer controller in degrees Fahrenheit or Celsius</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQUIPMENT</td>
<td>CONV</td>
<td>HP</td>
<td>CONV = conventional; HP O/B = Enable Heat Pump mode. Use AUX2 I for Heat Pump input from thermostat or controller.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUX2 IN</td>
<td>W</td>
<td>Shutdown (SD)</td>
<td>Heat (W1) HP(O) HP(B)</td>
<td>In CONV mode: SD = Enables configuration of shutdown (default); W = informs controller that system is in heating mode. NOTE: If using 2-speed fan mode, you must program CONV mode for W. Shutdown is not available in 2-speed fan mode. In HP O/B mode: HP(O) = energize heat pump on Cool (default); HP(B) = energize heat pump on heat.</td>
<td></td>
</tr>
<tr>
<td>FAN SPEED</td>
<td>2 speed</td>
<td>1 speed/2 speed</td>
<td>Sets the economizer controller for operation of 1 speed or 2 speed supply fan. The controller does not control the fan, but positions the OA and RA dampers to heating or cooling mode. NOTE: 2-speed fan option also needs Heat (W1) programmed in AUX 2 In.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAN CFM</td>
<td>5000 cfm</td>
<td>100 to 15000 cfm; increment by 100</td>
<td>UNIT DESIGN AIRFLOW (CFM)</td>
<td>Enter only if using DCVCAL ENA = AUTO This is the capacity of the RTU. The value is found on the nameplate label for the specific unit.</td>
<td></td>
</tr>
<tr>
<td>AUX1 OUT</td>
<td>NONE</td>
<td>ERV EXH2 SYS</td>
<td>Select OUTPUT for AUX1 O relay • NONE = not configured (output is not used) • ERV = Energy Recovery Ventilator†• EXH2 = second damper position 24 vac out for second exhaust fan • SYS = use output as an alarm signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCC</td>
<td>INPUT</td>
<td>INPUT or ALWAYS</td>
<td>OCCUPIED MODE BY EXTERNAL SIGNAL</td>
<td>When using a setback thermostat with occupancy out (24 vac), the 24 vac is input “INPUT” to the OCC terminal. If no occupancy output from the thermostat, then change program to “ALWAYS” OR add a jumper from terminal R to OCC terminal.</td>
<td></td>
</tr>
<tr>
<td>FACTORY DEFAULT</td>
<td>NO</td>
<td>NO or YES</td>
<td>Resets all set points to factory defaults when set to YES. LCD will briefly flash YES and change to NO but all parameters will change to the factory default values.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADVANCED SETUP</td>
<td>MA LO SET</td>
<td>45°F (7°C)</td>
<td>35°F to 65°F (2°C to 18°C); increment by 1 degree</td>
<td>SUPPLY AIR TEMPERATURE LOW LIMIT</td>
<td>Temperature to activate Freeze Protection (close damper or modulate to MIN POS if temp falls below set value).</td>
</tr>
<tr>
<td></td>
<td>FREEZE POS</td>
<td>CLO</td>
<td>CLO or MIN</td>
<td>FREEZE PROTECTION DAMPER POSITION</td>
<td>Damper position when freeze protection is active (closed or MIN POS).</td>
</tr>
<tr>
<td></td>
<td>CO2 ZERO</td>
<td>0ppm</td>
<td>0 to 500 ppm; increment by 10</td>
<td>CO2 ppm level to match CO2 sensor start level.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO2 SPAN</td>
<td>2000ppm</td>
<td>1000 to 3000 ppm; increment by 50</td>
<td>CO2 ppm span to match CO2 sensor; e.g.: 500-1500 sensor output would be 500 CO2 zero and 1000 CO2 span.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STG3 DLY</td>
<td>2.0h</td>
<td>0 min, 5 min, 15 min, then 15 min intervals. Up to 4 hrs or OFF</td>
<td>COOLING STAGE 3 DELAY</td>
<td>Delay after stage 2 cool has been active. Turns on second stage of cooling when economizer is first stage call and mechanical cooling is second stage call. Allows three stages of cooling, 1 economizer and 2 mechanical. OFF = no Stage 3 cooling</td>
</tr>
<tr>
<td></td>
<td>SD DMPR POS</td>
<td>CLO</td>
<td>CLO or OPN</td>
<td>Indicates shutdown signal from space thermostat or unitary controller. When controller receives 24 vac input on the SD terminal in conventional mode, the OA damper will open if programmed for OPN and OA damper will close if programmed for CLO. All other controls, e.g., fans, etc. will shut off.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DA LO ALM</td>
<td>45°F (7°C)</td>
<td>NONE</td>
<td>Used for alarm for when the DA air temperature is too low. Set lower range of alarm, below this temperature the alarm will show on the display.</td>
<td></td>
</tr>
</tbody>
</table>

†Note: ERV or Energy Recovery Ventilator
Table 11 — W7220 Menu Structure* (cont)

<table>
<thead>
<tr>
<th>MENU</th>
<th>PARAMETER</th>
<th>PARAMETER DEFAULT VALUE</th>
<th>PARAMETER RANGE AND INCREMENT†</th>
<th>EXPANDED PARAMETER NAME</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVANCED</td>
<td>DA HI ALM</td>
<td>80°F (27°C)</td>
<td>NONE, 70°F to 180°F (21°C to 82°C); Increment by 5°F</td>
<td>Used for alarm for when the DA air temperature is too high. Sets upper range of alarm; above this temperature, the alarm will show on the display.</td>
<td></td>
</tr>
<tr>
<td>SETUP (cont)</td>
<td>DCVCAL ENA</td>
<td>MAN</td>
<td>MAN (manual) AUTO</td>
<td>Turns on the DCV automatic control of the dampers. Resets ventilation based on the RA, OA, MA and MA sensor conditions. Requires all (RA, OA, MA, CO2) sensors. This operation is not operable with a 2-speed fan unit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAT T CAL</td>
<td>0.0°F</td>
<td>± 2.5°F</td>
<td>SUPPLY AIR TEMPERATURE CALIBRATION</td>
<td>Allows for the operator to adjust for an out of calibration temperature sensor.</td>
</tr>
<tr>
<td></td>
<td>OAS T CAL</td>
<td>0.0°F</td>
<td>± 2.5°F</td>
<td>OUTSIDE AIR TEMPERATURE CALIBRATION</td>
<td>Allows for the operator to adjust for an out of calibration temperature sensor.</td>
</tr>
<tr>
<td></td>
<td>OA H CAL</td>
<td>0% RH ±10% RH</td>
<td>return air humidity calibration</td>
<td>Allows for operator to adjust for an out of calibration humidity sensor.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RA T CAL</td>
<td>0.0°F</td>
<td>± 2.5°F</td>
<td>RETURN AIR TEMPERATURE CALIBRATION</td>
<td>Allows for the operator to adjust for an out of calibration temperature sensor.</td>
</tr>
<tr>
<td></td>
<td>RA H CAL</td>
<td>0% RH ±10% RH</td>
<td>RETURN AIR HUMIDITY CALIBRATION</td>
<td>Allows for operator to adjust for an out of calibration humidity sensor.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DA T CAL</td>
<td>0.0°F</td>
<td>± 2.5°F</td>
<td>DISCHARGE AIR TEMPERATURE CALIBRATION</td>
<td>Allows for the operator to adjust for an out of calibration temperature sensor.</td>
</tr>
<tr>
<td></td>
<td>2SP FAN DELAY</td>
<td>5 Minutes</td>
<td>0 to 20 minutes in 1 minute increments</td>
<td>TIME DELAY ON SECOND STAGE ECONOMIZING</td>
<td>When in economizing mode, this is the delay for the high speed fan to try to satisfy the call for second stage cooling before the first stage mechanical cooling is enabled.</td>
</tr>
<tr>
<td></td>
<td>DAMPER MINIMUM POSITION</td>
<td>N/A</td>
<td>N/A</td>
<td>The checkout for the damper minimum position is based on the system. See Table 12.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DAMPER OPEN</td>
<td>N/A</td>
<td>N/A</td>
<td>Position damper to the full open position. Exhaust fan contacts enable during the DAMPER OPEN test. Make sure to pause in the mode to allow exhaust contacts to energize due to the delay in the system.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DAMPER CLOSE</td>
<td>N/A</td>
<td>N/A</td>
<td>Positions damper to the fully closed position</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONNCT Y1–O</td>
<td>N/A</td>
<td>N/A</td>
<td>Closes the Y1-O relay (Y1-O)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONNCT Y2–O</td>
<td>N/A</td>
<td>N/A</td>
<td>Closes the Y2-O relay (Y2-O)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONNCT AUX1–O</td>
<td>N/A</td>
<td>N/A</td>
<td>Energizes the AUX output. If Aux setting is:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• NONE — no action taken</td>
<td></td>
</tr>
<tr>
<td>CHECKOUT***</td>
<td></td>
<td></td>
<td></td>
<td>• ERV — 24 vac out. Turns on or signals an ERV that the conditions are not good for economizing but are for ERV operation.††</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• SYS — 24 vac out. Issues a system alarm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONNCT EXH1</td>
<td>N/A</td>
<td>N/A</td>
<td>Closes the power exhaust fan 1 relay (EXH1)</td>
<td></td>
</tr>
<tr>
<td>ALARMS</td>
<td>MA T SENS ERR</td>
<td>N/A</td>
<td>N/A</td>
<td>SUPPLY AIR TEMPERATURE SENSOR ERROR</td>
<td>Mixed air sensor has failed or become disconnected - check wiring, then replace sensor if the alarm continues.</td>
</tr>
<tr>
<td></td>
<td>CO2 SENS ERR</td>
<td>N/A</td>
<td>N/A</td>
<td>CO2 SENSOR ERROR</td>
<td>CO2 sensor has failed, gone out of range or become disconnected - check wiring then replace sensor if the alarm continues.</td>
</tr>
<tr>
<td></td>
<td>OA SYLK T ERR</td>
<td>N/A</td>
<td>N/A</td>
<td>OUTSIDE AIR S-BUS SENSOR ERROR</td>
<td>Outdoor air enthalpy sensor has failed or become disconnected - check wiring, then replace sensor if the alarm continues.</td>
</tr>
<tr>
<td></td>
<td>OA SYLK H ERR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>Outdoor air enthalpy sensor has failed or become disconnected - check wiring, then replace sensor if the alarm continues.</td>
</tr>
<tr>
<td></td>
<td>RA SYLK T ERR</td>
<td>N/A</td>
<td>N/A</td>
<td>RETURN AIR S-BUS SENSOR ERROR</td>
<td>Return air enthalpy sensor has failed or become disconnected - check wiring, then replace sensor if the alarm continues.</td>
</tr>
<tr>
<td></td>
<td>RA SYLK H ERR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>Return air enthalpy sensor has failed or become disconnected - check wiring, then replace sensor if the alarm continues.</td>
</tr>
<tr>
<td></td>
<td>DA SYLK T ERR</td>
<td>N/A</td>
<td>N/A</td>
<td>DISCHARGE AIR S-BUS SENSOR ERROR</td>
<td>Discharge air sensor has failed or become disconnected - check wiring, then replace sensor if the alarm continues.</td>
</tr>
<tr>
<td></td>
<td>DA SYLK H ERR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>Discharge air sensor has failed or become disconnected - check wiring, then replace sensor if the alarm continues.</td>
</tr>
<tr>
<td></td>
<td>OA SENS T ERR</td>
<td>N/A</td>
<td>N/A</td>
<td>OUTSIDE AIR TEMPERATURE SENSOR ERROR</td>
<td>Outdoor air temperature sensor has failed or become disconnected - check wiring, then replace if the alarm continues.</td>
</tr>
<tr>
<td></td>
<td>ACT ERROR</td>
<td>N/A</td>
<td>N/A</td>
<td>ACTUATOR ERROR</td>
<td>Actuator has failed or become disconnected - check for stall, over voltage, under voltage and actuator count. Replace actuator if damper is movable and supply voltage is between 21.6 V and 26.4 V. Check actuator count on STATUS menu.</td>
</tr>
</tbody>
</table>
Table 11 — W7220 Menu Structure* (cont)

<table>
<thead>
<tr>
<th>MENU</th>
<th>PARAMETER</th>
<th>PARAMETER DEFAULT VALUE</th>
<th>PARAMETER RANGE AND INCREMENT†</th>
<th>EXPANDED PARAMETER NAME</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALARMS (CONT)</td>
<td>FREEZE ALARM</td>
<td>N/A</td>
<td>N/A</td>
<td>Check if outdoor temperature is below the LOW Temp Lockout on set point menu. Check if Mixed air temperature on STATUS menu is below the Lo Set point on Advanced menu. When conditions are back in normal range, the alarm will go away.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SHUTDOWN ACTIVE</td>
<td>N/A</td>
<td>N/A</td>
<td>AUX2 IN is programmed for SHUTDOWN and 24 V has been applied to AUX2 IN terminal.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DMP CAL RUNNING</td>
<td>N/A</td>
<td>N/A</td>
<td>DAMPER CALIBRATION ROUTINE RUNNING If DCV Auto enable has been programmed, this alarm will display when the W7220 is completing a calibration on the dampers. Wait until the calibration is completed and the alarm will go away. Must have OA, MA and RA sensors for DCV calibration; set up is in the Advanced setup menu.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DA SENS ALM</td>
<td>N/A</td>
<td>N/A</td>
<td>DISCHARGE AIR TEMPERATURE SENSOR ALARM Discharge air temperature is out of the range set in the ADVANCED SETUP Menu. Check the temperature of the discharge air.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYS ALARM</td>
<td>N/A</td>
<td>N/A</td>
<td>When AUX1-O is set to SYS and there is any alarm (e.g., failed sensors, etc.), the AUX1-O terminal has 24 vac out.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACT UNDER V</td>
<td>N/A</td>
<td>N/A</td>
<td>ACTUATOR VOLTAGE LOW Voltage received by actuator is above expected range.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACT OVER V</td>
<td>N/A</td>
<td>N/A</td>
<td>ACTUATOR VOLTAGE HIGH Voltage received by actuator is below expected range.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACT STALLED</td>
<td>N/A</td>
<td>N/A</td>
<td>ACTUATOR STALLED Actuator stopped before achieving commanded position.</td>
<td></td>
</tr>
</tbody>
</table>

Table 11 illustrates the complete hierarchy. Your menu parameters may be different depending on your configuration. For example, if you do not have a DCV (CO2) sensor, then none of the DCV parameters appear.† When values are displayed, pressing and holding the ▲ or ▼ button causes the display to automatically increment. ** N/A = Not Applicable. †† ERV Operation: When in cooling mode AND the conditions are NOT OK for economizing - the ERV terminal will be energized. In the Heating mode, the ERV terminal will be energized when the OA is below the ERV OAT set point in the set point menu. * After 10 minutes without a command or mode change, the controller will change to normal operation.

Table 12 — Damper Minimum Position Settings and Readings on Checkout Menu

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (CO2 SENSOR)</th>
<th>FAN SPEED</th>
<th>SETPOINTS</th>
<th>CHECKOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>1</td>
<td>MIN POS</td>
<td>VMAX–HS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>MIN POS H</td>
<td>VMAX–HS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIN POS L</td>
<td>VMAX–LS</td>
</tr>
<tr>
<td>YES</td>
<td>1</td>
<td>VENT MIN</td>
<td>VMAX–HS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VENT MAX</td>
<td>VMAX–HS</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>VENT MIN H</td>
<td>VMAX–HS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VENT MAX H</td>
<td>VMAX–LS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VENT MIN L</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VENT MAX L</td>
<td>N/A</td>
</tr>
</tbody>
</table>

For damper minimum position settings and checkout menu readings, see Table 12. For dry bulb operation with a 1-speed fan, with or without DCV, see Tables 13 and 14. For enthalpy operation with a 1-speed fan, with or without DCV, see Tables 15 and 16. For dry bulb operation with a 2 speed indoor fan, with or without DCV, see Tables 17 and 18. For enthalpy operation with a 2 speed indoor fan, with or without DCV, see Tables 19 and 20.
*With stage 3 delay (STG3 DLY) in Advanced setup menu can turn on second stage of mechanical cooling Y2–O after the delay if the call for Y–I and Y2–I have not been satisfied.

Table 13 — Dry Bulb Operation without DCV (CO₂ Sensor) — 1 Speed Fan

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (DCV)</th>
<th>OUTSIDE AIR GOOD TO ECONOMIZE</th>
<th>Y1-I</th>
<th>Y2-I</th>
<th>FAN SPEED</th>
<th>Y1-O</th>
<th>Y2-O</th>
<th>OCCUPIED</th>
<th>UNOCCUPIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Off Off</td>
<td>High</td>
<td></td>
<td>0-v/Off</td>
<td>0-v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>On Off High</td>
<td>24-v/On 0-v/Off</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On On High</td>
<td>24-v/On 24-v/On</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Off Off</td>
<td>High</td>
<td></td>
<td>0-v/Off</td>
<td>0-v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>On Off High</td>
<td>24-v/On 0-v/Off</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On On High</td>
<td>24-v/On 24-v/On</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 14 — Dry Bulb Operation with DCV (CO₂ Sensor) — 1 Speed Fan

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (DCV)</th>
<th>OUTSIDE AIR GOOD TO ECONOMIZE</th>
<th>Y1-I</th>
<th>Y2-I</th>
<th>FAN SPEED</th>
<th>Y1-O</th>
<th>Y2-O</th>
<th>OCCUPIED</th>
<th>UNOCCUPIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below CO₂ set</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Off Off</td>
<td>High</td>
<td></td>
<td>0-v/Off</td>
<td>0-v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>On Off High</td>
<td>24-v/On 0-v/Off</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On On High</td>
<td>24-v/On 24-v/On</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Off Off</td>
<td>High</td>
<td></td>
<td>0-v/Off</td>
<td>0-v/Off</td>
<td>VENTMIN</td>
<td>Closed to Full-Open</td>
<td>Closed to Full-Open</td>
</tr>
<tr>
<td>On Off High</td>
<td>24-v/On 0-v/Off</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On On High</td>
<td>24-v/On 24-v/On</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Above CO₂ set								
No	Off Off	High		0-v/Off	0-v/Off	VENTMIN	Closed	
On Off High	24-v/On 0-v/Off							
On On High	24-v/On 24-v/On							
Yes	Off Off	High		0-v/Off	0-v/Off	VENTMIN	Closed to Full-Open	Closed to Full-Open
On Off High	24-v/On 0-v/Off							
On On High	24-v/On 24-v/On							

Table 15 — Enthalpy Operation without DCV (CO₂ Sensor) — 1 Speed Fan

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (DCV)</th>
<th>OUTSIDE AIR GOOD TO ECONOMIZE</th>
<th>Y1-I</th>
<th>Y2-I</th>
<th>FAN SPEED</th>
<th>Y1-O</th>
<th>Y2-O</th>
<th>OCCUPIED</th>
<th>UNOCCUPIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Off Off</td>
<td>High</td>
<td></td>
<td>0-v/Off</td>
<td>0-v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>On Off High</td>
<td>24-v/On 0-v/Off</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On On High</td>
<td>24-v/On 24-v/On</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Off Off</td>
<td>High</td>
<td></td>
<td>0-v/Off</td>
<td>0-v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>On Off High</td>
<td>24-v/On 0-v/Off</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On On High</td>
<td>24-v/On 24-v/On</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*With stage 3 delay (STG3 DLY) in Advanced setup menu can turn on second stage of mechanical cooling Y2–O after the delay if the call for Y–I and Y2–I have not been satisfied.
With 2SP FAN DELAY (Advanced Setup Menu) when in the economizing mode there is a delay for the high speed fan to try to satisfy the call for second stage cooling by turning on the fan to high and opening the OA damper 100% before the first stage mechanical cooling is enabled.

†With stage 3 delay (STG3 DLY) in Advanced setup menu can turn on second stage of mechanical cooling Y2–O after the delay if the call for Y–I and Y2–I have not been satisfied.

Table 16 — Enthalpy Operation with DCV (CO₂ Sensor) — 1 Speed Fan

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (DCV)</th>
<th>OUTSIDE AIR GOOD TO ECONOMIZE</th>
<th>Y1–I</th>
<th>Y2–I</th>
<th>FAN SPEED</th>
<th>Y1–O</th>
<th>Y2–O</th>
<th>OCCUPIED</th>
<th>UNOCUPIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below CO₂ set</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Off</td>
<td>Off</td>
<td>High</td>
<td>0-v/Off</td>
<td>0-v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>High</td>
<td>24-v/On</td>
<td>0-v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>High</td>
<td>High</td>
<td>24-v/On</td>
<td>24-v/On</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Off</td>
<td>Off</td>
<td>High</td>
<td>0-v/Off</td>
<td>0-v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>High</td>
<td>0-v/Off</td>
<td>0-v/Off</td>
<td>VENTMIN</td>
<td>Closed to Full-Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>High</td>
<td>24-v/On</td>
<td>0-v/Off</td>
<td>VENTMIN</td>
<td>Closed to Full-Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above CO₂ set</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Off</td>
<td>Off</td>
<td>High</td>
<td>0-v/Off</td>
<td>0-v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>High</td>
<td>High</td>
<td>24-v/On</td>
<td>24-v/On</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Off</td>
<td>Off</td>
<td>High</td>
<td>0-v/Off</td>
<td>0-v/Off</td>
<td>VENTMIN</td>
<td>Closed to Full-Open</td>
<td></td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>High</td>
<td>High</td>
<td>0-v/Off</td>
<td>0-v/Off</td>
<td>VENTMIN</td>
<td>Closed to Full-Open</td>
<td></td>
</tr>
</tbody>
</table>

*With 2SP FAN DELAY (Advanced Setup Menu) when in the economizing mode there is a delay for the high speed fan to try to satisfy the call for second stage cooling by turning on the fan to high and opening the OA damper 100% before the first stage mechanical cooling is enabled.

†With stage 3 delay (STG3 DLY) in Advanced setup menu can turn on second stage of mechanical cooling Y2–O after the delay if the call for Y–I and Y2–I have not been satisfied.

Table 17 — Dry Bulb Operation without DCV (CO₂ Sensor) — 2 Speed Fan

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (DCV)</th>
<th>OUTSIDE AIR GOOD TO ECONOMIZE</th>
<th>Y1–I</th>
<th>Y2–I</th>
<th>FAN SPEED</th>
<th>Y1–O</th>
<th>Y2–O</th>
<th>OCCUPIED</th>
<th>UNOCUPIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Off</td>
<td>Off</td>
<td>Low</td>
<td>0-v/Off</td>
<td>0-v/Off</td>
<td>MIN POS L</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Low</td>
<td>24-v/On</td>
<td>0-v/Off</td>
<td>MIN POS L</td>
<td>Closed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>High</td>
<td>24-v/On</td>
<td>24-v/On</td>
<td>MIN POS H</td>
<td>Closed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Off</td>
<td>Off</td>
<td>Low</td>
<td>0-v/Off</td>
<td>0-v/Off</td>
<td>MIN POS L</td>
<td>Closed to Full-Open</td>
<td></td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Low</td>
<td>24-v/On</td>
<td>0-v/Off</td>
<td>MIN POS L to Full-Open</td>
<td>Closed to Full-Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>High</td>
<td>DELAY* 24-v/On</td>
<td>0-v/Off</td>
<td>MIN POS H to Full-Open</td>
<td>Closed to Full-Open</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*With 2SP FAN DELAY (Advanced Setup Menu) when in the economizing mode there is a delay for the high speed fan to try to satisfy the call for second stage cooling by turning on the fan to high and opening the OA damper 100% before the first stage mechanical cooling is enabled.

†With stage 3 delay (STG3 DLY) in Advanced setup menu can turn on second stage of mechanical cooling Y2–O after the delay if the call for Y–I and Y2–I have not been satisfied.
Table 18 — Dry Bulb Operation with DCV (CO₂ Sensor) — 2 Speed Fan

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (DCV)</th>
<th>OUTSIDE AIR GOOD TO ECONOMIZE</th>
<th>Y1-I</th>
<th>Y2-I</th>
<th>FAN SPEED</th>
<th>Y1-O</th>
<th>Y2-O</th>
<th>OCCUPIED</th>
<th>UNOCUPIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below CO₂ Set</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON OFF</td>
<td>LOW</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN to Full-Open</td>
<td>Closed to Full-Open</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON OFF</td>
<td>LOW</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>VENTMIN to Full-Open</td>
<td>Closed to Full-Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>VENTMIN to Full-Open</td>
<td>Closed to Full-Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above CO₂ Set</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN to VENTMAX</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON OFF</td>
<td>LOW</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>VENTMIN to VENTMAX</td>
<td>Closed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>VENTMIN to VENTMAX</td>
<td>Closed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN to Full-Open</td>
<td>Closed to Full-Open</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON OFF</td>
<td>LOW</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>VENTMIN to Full-Open</td>
<td>Closed to Full-Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>VENTMIN to Full-Open</td>
<td>Closed to Full-Open</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*With 2SP FAN DELAY (Advanced Setup Menu) when in the economizing mode there is a delay for the high speed fan to try to satisfy the call for second stage cooling by turning on the high speed fan to high and opening the OA damper 100% before the first stage mechanical cooling is enabled.
†With stage 3 delay (STG3 DLY) in Advanced setup menu can turn on second stage of mechanical cooling Y2–O after the delay if the call for Y1–I and Y2–I have not been satisfied.

Table 19 — Enthalpy Operation without DCV (CO₂ Sensor) — 2 Speed Fan

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (DCV)</th>
<th>OUTSIDE AIR GOOD TO ECONOMIZE</th>
<th>Y1-I</th>
<th>Y2-I</th>
<th>FAN SPEED</th>
<th>Y1-O</th>
<th>Y2-O</th>
<th>OCCUPIED</th>
<th>UNOCUPIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO CO₂ SENSOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON OFF</td>
<td>LOW</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>MIN POS</td>
<td>Closed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>MIN POS to Full Open</td>
<td>Closed to Full-Open</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON OFF</td>
<td>LOW</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>MIN POS to Full Open</td>
<td>Closed to Full-Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>MIN POS to Full Open</td>
<td>Closed to Full-Open</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*With 2SP FAN DELAY (Advanced Setup Menu) when in the economizing mode there is a delay for the high speed fan to try to satisfy the call for second stage cooling by turning on the fan to high and opening the OA damper 100% before the first stage mechanical cooling is enabled.
†With stage 3 delay (STG3 DLY) in Advanced setup menu can turn on second stage of mechanical cooling Y2–O after the delay if the call for Y1–I and Y2–I have not been satisfied.
With 2SP FAN DELAY (Advanced Setup Menu) when in the economizing mode there is a delay for the high speed fan to try to satisfy the call for second stage cooling by turning on the fan to high and opening the OA damper 100% before the first stage mechanical cooling is enabled.

†With stage 3 delay (STG3 DLY) in Advanced setup menu can turn on second stage of mechanical cooling Y2–O after the delay if the call for Y1–I and Y2–I have not been satisfied.

ENTHALPY SETTINGS

When the OA temperature, enthalpy and dew point are below the respective set points, the Outdoor Air can be used for economizing. Figure 51 shows the new single enthalpy boundaries in the W7220. There are 5 boundaries (set points ES1 through ES5), which are defined by dry bulb temperature, enthalpy and dew point.

Refer to Table 22 for ENTH CURVE set point values.

The W7220 calculates the enthalpy and dew point using the OA temperature and humidity input from the OA enthalpy sensor. When the OA temperature, OA humidity and OA dew point are all below the selected boundary, the economizer sets the economizing mode to YES, economizing is available.

When all of the OA conditions are above the selected boundary, the conditions are not good to economize and the mode is set to NO.

Figure 51 shows the 5 current boundaries. There is also a high limit boundary for differential enthalpy. The high limit boundary is ES1 when there are no stages of mechanical cooling energized and HL (high limit) when a compressor stage is energized.

TWO-SPEED FAN OPERATION

NOTE: Two-Speed Fan operation applies to size 07 models only.

The W7220 controller has the capability to work with a system using a 2-speed supply fan. The W7220 does not control the supply directly but uses the following input status to determine the speed of the supply fan and controls the OA damper to the required position, see Table 21.

Table 20 — Enthalpy Operation with DCV (CO₂ Sensor) — 2 Speed Fan

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (DCV)</th>
<th>OUTSIDE AIR GOOD TO ECONOMIZE</th>
<th>Y1-I</th>
<th>Y2-I</th>
<th>FAN SPEED</th>
<th>Y1-O</th>
<th>Y2-O</th>
<th>OCCUPIED</th>
<th>UNOCCUPIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below CO₂ Set</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>24v/On</td>
<td>24v/On</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>24v/On</td>
<td>24v/On</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above CO₂ Set</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>24v/On</td>
<td>24v/On</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>24v/On</td>
<td>24v/On</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 21 — Fan Speed

<table>
<thead>
<tr>
<th>STATE</th>
<th>FAN SPEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCC</td>
<td>Low</td>
</tr>
<tr>
<td>Y1</td>
<td>Low</td>
</tr>
<tr>
<td>Y2</td>
<td>High</td>
</tr>
<tr>
<td>W</td>
<td>High</td>
</tr>
</tbody>
</table>

The W (heating mode) is not controlled by the W7220 but it requires the status to know where to position the OA damper for minimum position for the fan speed.

The 2 speed fan delay is available when the system is programmed for 2 speed fan (in the System Setup menu item). The 2 speed fan delay is defaulted to 5 minutes and can be changed in the Advanced Setup menu item. When the unit has a call for Y1 In and in the free cooling mode and there is a call for Y2 In, the 2-speed fan delay starts and the OA damper will modulate 100% open, the supply fan should be set to high speed by the unit controller.

After the delay one of two actions will happen:

- The Y2 In call will be satisfied with the damper 100% open and fan on high speed and the call will turn off
- OR
- If the call for additional cooling in the space has not been satisfied then the first stage of mechanical cooling will be enabled through Y1 Out or Y2 Out.
CHECKOUT

Inspect all wiring connections at the economizer module’s terminals, and verify compliance with the installation wiring diagrams. For checkout, review the Status of each configured parameter and perform the Checkout tests.

NOTE: For information about menu navigation and use of the keypad see Interface Overview on page 28.

Power Up

After the W7220 module is mounted and wired, apply power.

Initial Menu Display

On initial start up, Honeywell displays on the first line and economizer W7220 on the second line. After a brief pause, the revision of the software appears on the first line and the second line will be blank.

Power Loss (Outage or Brownout)

All set points and advanced settings are restored after any power loss or interruption.

NOTE: All settings are stored in non-volatile flash memory.

Status

Use the Status menu (see Table 11) to check the parameter values for the various devices and sensors configured.

NOTE: For information about menu navigation and use of the keypad, see Interface Overview on page 28.

Checkout Tests

Use the Checkout menu (see page 33) to test the damper operation and any configured outputs. Only items that are configured are shown in the Checkout menu.

NOTE: For information about menu navigation and use of the keypad, see Interface Overview on page 28.

To perform a Checkout test:

1. Scroll to the desired test in the Checkout menu using the ▲ and ▼ buttons.
2. Press the (Enter) button to select the item. RUN? appears.
3. Press the (Enter) button to start the test. The unit pauses and then displays IN PROGRESS. When the test is complete, DONE appears.
4. When all desired parameters have been tested, press the (Menu Up) button to end the test.

The Checkout tests can all be performed at the time of installation or at any time during the operation of the system as a test that the system is operable.

TROUBLESHOOTING

Alarms

The economizer module provides alarm messages that display on the 2-line LCD.

NOTE: Upon power up, the module waits 60 minutes before checking for alarms. This allows time for all the configured devices (e.g. sensors, actuator) to become operational. The exception is the SAT sensor which will alarm immediately.

If one or more alarms are present and there has been no keypad activity for at least 5 minutes, the Alarms menu displays and cycles through the active alarms.

CAUTION

EQUIPMENT DAMAGE HAZARD

Failure to follow this caution may result in equipment damage. Be sure to allow enough time for compressor start-up and shutdown between checkout tests so that you do not short-cycle the compressors.
You can also navigate to the Alarms menu at any time.

Clearing Alarms

Once the alarm has been identified and the cause has been removed (e.g. replaced faulty sensor) the alarm can be cleared from the display.

To clear an alarm, perform the following:
1. Navigate to the desired alarm.
2. Press the (Enter) button. ERASE? displays.
3. Press the (Enter) button. ALARM ERASED displays.
4. Press the (Menu up/Exit) button to complete the action and return to the previous menu.

NOTE: If the alarm still exists after clearing it, it is redisplayed within 5 seconds.

RTU Open Controller (Factory Option)

For details on operating 48FC**04-07 units equipped with the factory-installed RTU Open controller option, refer to the *Factory-Installed Option RTU Open Multi-Protocol Controller Controls, Start-Up, Operation and Troubleshooting* manual.

SystemVu™ Controller (Factory Option)

For details on operating 48FC**04-07 units equipped with the factory-installed SystemVu controller option, refer to the *FC/ GC Series Single Package Rooftop Units with SystemVu Controller Controls, Start-up, Operation and Troubleshooting* manual.

Controller Options

LOW AMBIENT

If the unit comes with Electro-Mechanical (EM) controls, then no adjustment is necessary.

If the unit comes with SystemVu™ or RTU Open controller option, then refer to its installation control manual for details on adjusting “Cooling Lock-Out” setting and configure for the specific job requirements.

Smoke Detectors

Smoke detectors are available as factory-installed options on 48FC models. Smoke detectors may be specified for supply air only, for return air without or with economizer, or in combination of supply air and return air. Return-air smoke detectors are arranged for vertical return configurations only. All components necessary for operation are factory-provided and mounted. The unit is factory-configured for immediate smoke detector shutdown operation; additional wiring or modifications to unit terminal board may be necessary to complete the unit and smoke detector configuration to meet project requirements.

Units equipped with factory-optional return-air smoke detectors require a relocation of the sensor module at unit installation. See Fig. 52 for the as-shipped location.

Completing Return Air Smoke Sensor Installation

1. Unscrew the two screws holding the Return Air Smoke Detector assembly. See Fig. 53, Step 1. Save the screws.
2. Turn the assembly 90 degrees and then rotate end to end. Make sure that the elbow fitting is pointing down. See Fig. 53, Step 2.
3. Screw the sensor and detector plate into its operating position using screws from Step 1. See Fig. 53, Step 3.
4. Connect the flexible tube on the sampling inlet to the sampling tube on the basepan.

Additional Application Data

Refer to the application data document “Factory Installed Smoke Detectors for Small and Medium Rooftop Units 2 to 25 Tons” for discussions on additional control features of these smoke detectors including multiple unit coordination.
Step 14 — Adjust Factory-Installed Options

SMOKE DETECTORS
Smoke detector(s) will be connected at the Unit Control Board (UCB), at terminals marked “Smoke Shutdown.” Detach the jumper covering the Smoke Shutdown terminals on the UCB and then attach the wiring harness from the smoke detector.

ECONOMISER® IV OCCUPANCY SWITCH
See Fig. 54 for general EconoMi$er IV wiring. External occupancy control is managed through a connection on the Unit Control Board.

If external occupancy control is desired, connect a time clock or remotely controlled switch (closed for Occupied, open for Unoccupied sequence) at terminals marked OCCUPANCY. Detach the jumper covering the “Occupancy” terminals on the UCB and then attach the required connections.

Step 15 — Install Accessories
Available accessories include:

- Roof curb
- Thru-base connection kit (must be installed before unit is set on roof curb)
- LP conversion kit
- Flue discharge deflector
- Manual outside air damper
- Two-position motorized outside air damper
- EconoMi$er® IV (with control)
- EconoMi$er2 (without control/for external signal)
- Power Exhaust
- Differential dry-bulb sensor (EconoMi$er IV)
- Outdoor enthalpy sensor
- Differential enthalpy sensor
- CO₂ sensor
- Louvered hail guard
- Phase monitor control

Refer to separate installation instructions for information on installing these accessories.
Step 16 — Fan Speed Set Up

UNITS WITH ELECTRO-MECHANICAL CONTROLS

The fan speed set up controls are located on the lower section of the Unit Control Board (UCB). See Fig. 55 for the location on 3 phase voltage units or Fig. 56 for the location on single phase voltage units.

1. Check the job specifications for the CFM (cubic feet per minute) and ESP (external static pressure) required.
2. Using the chart on the Fan Speed Set Up labels (see Fig. 58), calculate the Vdc from the CFM and ESP for the base unit. Then add Vdc for any accessories installed per the “Field Accessories” section of the label.

 NOTE: The Fan Speed Set Up labels are located on the High Voltage cover in the Control Box.

3. Connect a multimeter to the Vdc terminals on the UCB.
4. Set the Range Switch to either A, B, or C per the Switch Range table.
5. Using a straight blade screwdriver, turn the Vdc control dial to fine tune the Vdc reading.
6. Record the reading in the Field Setting field.

 NOTE: Fan set-up Vdc is not affected by the operating stage of the unit.

Fig. 55 — UCB Fan Speed Controls - 3-Phase Units

Fig. 56 — UCB Fan Speed Controls - Single Phase Units

NOTE: On single phase units, the approximate static pressure of the ductwork must be set for optimal unit efficiency. The unit is factory set for greater than 1.0 in. wg. If the external static pressure is less than 1.0 in. wg, slide switch 1 on the 5-pin DIP to the “ON” position. See Fig. 57.
Fig. 58 — Example of Fan Speed Set Up Labels for Electro-Mechanical Controls

UNITS WITH SYSTEMVU™ CONTROLS

On units equipped with the factory-installed SystemVu controller the Fan Speed settings are accessed through the SystemVu interface.

1. Check the job specifications for the CFM (cubic feet per minute) and ESP (external static pressure) required.
2. Using the chart on the Fan Speed Set Up labels (see Fig. 59), calculate the RPM from the CFM and ESP for the base unit plus any field accessories (as listed on the label).

NOTE: The Fan Speed Set Up labels are located on the High Voltage cover in the Control Box.

3. Press any key on the SystemVu interface to activate the display backlight and then press the MENU key.
4. Using the UP and DOWN arrow keys highlight SETTINGS and then press ENTER.
5. Use the DOWN arrow key highlight the UNIT CONFIGURATIONS menu then press ENTER.
6. Highlight UNIT CONFIGURATIONS then press ENTER.

7. Highlight INDOOR FAN and then press ENTER.
8. Refer to the job specifications to set the following, determining the values per the RPM Calculator label (see Fig. 59). Use the UP and DOWN arrow keys and the BACK key to set the values. Press ENTER after setting each value to continue to the next selection.
 - IDF VENT SPD
 - IDF HEAT SPD
 - IDF LOW COOL SPD
 - IDF HIGH SPD
 - IDF FREE COOL SPD

For further details, see the FC/GC Series Single Package Rooftop Units with SystemVu Controller Controls, Start-up, Operation and Troubleshooting manual.

VDC Calculator

<table>
<thead>
<tr>
<th>UNIT MODEL NUMBER</th>
<th>VDC</th>
<th>ESP in. wg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>1625</td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>1750</td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>1875</td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>2125</td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>2250</td>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td>2375</td>
<td></td>
<td>1.6</td>
</tr>
<tr>
<td>2500</td>
<td></td>
<td>1.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT MODEL NUMBER</th>
<th>VDC</th>
<th>ESP in. wg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1625</td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>1750</td>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td>1875</td>
<td></td>
<td>1.6</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>2125</td>
<td></td>
<td>2.0</td>
</tr>
</tbody>
</table>

Factory Setting: 7.8 VDC

Field Setting:

- Record field setting here

Switch Range:

- A: 4.1 - 7.5
- B: 6.9 - 8.7
- C: 7.7 - 10.0

Overlap in A, B, C switch range designed for maximum field adjustment potential. For example 7.2 can be set at either A or B.
Fig. 59 — Example of Fan Speed Set Up Labels for SystemVu™ Controls
NOTE: To avoid injury to personnel and damage to equipment or property when completing the procedures listed in this start-up checklist, use good judgment, follow safe practices, and adhere to the safety considerations/information as outlined in preceding sections of this Installation Instruction document.

I. PRELIMINARY INFORMATION

MODEL NO __
JOB NAME___
SERIAL NO __
ADDRESS ___
START-UP DATE__
TECHNICIAN NAME _____________________________________
ADDITIONAL ACCESSORIES

II. PRE-START-UP

Verify that all packaging materials have been removed from unit (Y/N) _____
Verify installation of outdoor air hood (Y/N) _____
Verify installation of flue exhaust and inlet hood (Y/N) _____
Verify that condensate connection is installed per instructions (Y/N) _____
Verify that all electrical connections and terminals are tight (Y/N) _____
Verify gas pressure to unit gas valve is within specified range (Y/N) _____
Check gas piping for leaks (Y/N) _____
Check that indoor-air filters are clean and in place (Y/N) _____
Check that outdoor air inlet screens are in place (Y/N) _____
Verify that unit is level (Y/N) _____
Verify that fan assembly is free of obstructions and rotor spins freely (Y/N) _____
Verify that scroll compressors are rotating in the correct direction (Y/N) _____
Verify installation of thermostat (Y/N) _____
Verify that crankcase heaters have been energized for at least 24 hours (Y/N) _____

III. START-UP

ELECTRICAL

Supply Voltage L1-L2___________ L2-L3___________ L3-L1___________
Compressor Amps 1 L1___________ L2___________ L3___________
Compressor Amps 2 L1___________ L2___________ L3___________
Supply Fan Amps L1___________ L2___________ L3___________

TEMPERATURES

Outdoor-air Temperature __________°F DB (Dry Bulb)
Return-air Temperature __________°F DB __________°F WB (Wet Bulb)
Cooling Supply Air Temperature __________°F
Gas Heat Supply Air __________°F
Pressures

<table>
<thead>
<tr>
<th>Description</th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Circuit A</th>
<th>Circuit B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Inlet Pressure</td>
<td>________</td>
<td>________</td>
<td>________</td>
<td>________</td>
</tr>
<tr>
<td>Gas Manifold Pressure</td>
<td>________</td>
<td>________</td>
<td>________</td>
<td>________</td>
</tr>
<tr>
<td>Refrigerant Suction</td>
<td>________</td>
<td>________</td>
<td>________</td>
<td>________</td>
</tr>
<tr>
<td>Refrigerant Discharge</td>
<td>________</td>
<td>________</td>
<td>________</td>
<td>________</td>
</tr>
</tbody>
</table>

Verify Refrigerant Charge using Charging Charts (Y/N) _____

General

- Economizer minimum vent and changeover settings to job requirements (if equipped) (Y/N) _____
- Verify smoke detector unit shutdown by utilizing magnet test (Y/N) _____

IV. Humidi-Mizer® System Start-Up

Steps

1. Check UCB (Unit Control Board) for jumper 1, 2, 3 (Jumper 1, 2, 3 must be cut and open) (Y/N) _____
2. Open humidistat contacts (Y/N) _____
3. Start unit in cooling (Close Y1) (Y/N) _____

Observe and Record

<table>
<thead>
<tr>
<th>Observation</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Suction pressure</td>
<td>________ PSIG</td>
</tr>
<tr>
<td>B. Discharge pressure</td>
<td>________ PSIG</td>
</tr>
<tr>
<td>C. Entering air temperature</td>
<td>________ °F</td>
</tr>
<tr>
<td>D. Liquid line temperature at outlet or reheat coil</td>
<td>________ °F</td>
</tr>
<tr>
<td>E. Confirm correct rotation for compressor</td>
<td>(Y/N) _____</td>
</tr>
<tr>
<td>F. Check for correct ramp-up of outdoor fan motor as condenser coil warms</td>
<td>(Y/N) _____</td>
</tr>
</tbody>
</table>

4. Switch unit to high-latent mode (sub-cooler) by closing humidistat with Y1 closed (Y/N) _____
5. Check unit charge per charging chart (Y/N) _____

Observe

<table>
<thead>
<tr>
<th>Observation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Reduction in suction pressure (5 to 7 psi expected)</td>
<td>(Y/N) _____</td>
</tr>
<tr>
<td>B. Discharge pressure unchanged</td>
<td>(Y/N) _____</td>
</tr>
<tr>
<td>C. Liquid temperature drops to 50 to 55°F range</td>
<td>(Y/N) _____</td>
</tr>
<tr>
<td>D. LSV solenoid energized (valve closes)</td>
<td>(Y/N) _____</td>
</tr>
</tbody>
</table>

6. Switch unit to dehumid (reheat) by opening Y1 (Y/N) _____

Observe

<table>
<thead>
<tr>
<th>Observation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Suction pressure increases to normal cooling level</td>
<td></td>
</tr>
<tr>
<td>B. Discharge pressure decreases (35 to 50 psi) (Limited by head pressure control)</td>
<td></td>
</tr>
<tr>
<td>C. Liquid temperature returns to normal cooling level</td>
<td></td>
</tr>
<tr>
<td>D. LSV solenoid energized (valve closes)</td>
<td></td>
</tr>
<tr>
<td>E. DSV solenoid energized, valve opens</td>
<td></td>
</tr>
</tbody>
</table>

7. With unit in dehumid mode close W1 compressor and outdoor fan stop; LSV and DSV solenoids de-energized (Y/N) _____
8. Open W1 restore unit to dehumid mode (Y/N) _____
9. Open humidistat input compressor and outdoor fan stop; LSV and DSV solenoids de-energized (Y/N) _____
10. Restore setpoints for thermostat and humidistat (Y/N) _____