Installation Instructions

NOTE: Read the entire instruction manual before starting the installation.

TABLE OF CONTENTS

SAFETY CONSIDERATIONS ........................................ 2
Rated Indoor Airflow (cfm) ........................................ 3
INSTALLATION .................................................... 7
Jobsite Survey .................................................. 7
Step 1 - Plan for Unit Location ................................ 7
  Roof Mount .................................................. 7
Step 2 - Plan for Sequence of Unit Installation .......... 7
  Curb-Mount Installation ....................................... 7
  Pad-Mount Installation ........................................ 8
  Frame-Mount Installation .................................... 8
Step 3 - Inspect Unit ............................................ 8
Step 4 - Provide Unit Support .................................. 8
  Roof Curb Mount .............................................. 8
  Slab Mount (Horizontal Units Only) .................... 8
  Alternate Unit Support (In Lieu of Curb or Slab Mount) 8
Step 5 - Field Fabricate Ductwork ....................... 8
Step 6 - Rig and Place Unit ................................. 10
  Positioning on Curb ....................................... 11
Step 7 - Convert to Horizontal and Connect Ductwork .... 11
Step 8 - Install Outside Air Hood ......................... 11
  Economizer Hood Package Removal and Setup —
    Factory Option ............................................ 11
  Economizer Hood ........................................... 12
Step 9 - Units with Hinged Panels Only ............... 12
Step 10 - Install Flue Hood ................................. 13
Step 11 - Install Gas Piping ............................... 13
  Factory-Option Thru-Base Connections
    (Gas Connections) ......................................... 14
Step 12 - Install External Condensate Trap and Line .... 16
Step 13 - Make Electrical Connections ................. 16
  Field Power Supply ....................................... 16
  Units with Factory-Installed Non-Fused
    Disconnect or HACR ..................................... 23
  Units without Factory-Installed Non-Fused
    Disconnect or HACR ..................................... 24
  All Units .................................................. 24
  Convenience Outlets ...................................... 24
  HACR ...................................................... 26
  Factory-Option Thru-Base Connections
    (Electrical Connections) ................................. 26
  Units without Thru-Base Connections ................ 26
  Field Control Wiring ..................................... 26
  Thermostat ................................................ 26
  Unit without Thru-Base Connection Kit ................ 27
  Heat Anticipator Settings ................................ 27
  Humidi-MiZer® Control Connections .................... 27
  Humidi-MiZer - Space RH Controller .................... 27
  EconoMi$er® X (Factory-Installed Option) ............ 29
  SystemVu™ Controller (Factory-Installed Option) .... 29
  ComfortLINK (Factory-Installed Option) ............... 29
  RTU Open Control System ................................ 31
  Supply Air Temperature (SAT) Sensor .................. 34
  Outdoor Air Temperature (OAT) Sensor ................. 35
  EconoMi$er2 .............................................. 35
  Field Connections ......................................... 35
  Space Temperature (SPT) Sensors ....................... 35
  Indoor Air Quality (CO₂) Sensor ......................... 36
  Outdoor Air Quality Sensor ............................. 37
  Space Humidity Sensor or Humidistat .................. 37
  Smoke Detector/Fire Shutdown (FSD) .................... 38
  Connecting Discrete Inputs .............................. 38
  Communication Wiring - Protocols ...................... 39
  General ...................................................... 39
  Local Access .............................................. 40
  RTU Open Troubleshooting ............................... 40
SAFETY CONSIDERATIONS

Improper installation, adjustment, alteration, service, maintenance, or use can cause explosion, fire, electrical shock or other conditions which may cause personal injury or property damage. Consult a qualified installer, service agency, or your distributor or branch for information or assistance. The qualified installer or agency must use factory-authorized kits or accessories when modifying this product. Refer to the individual instructions packaged with the kits or accessories when installing.

Follow all safety codes. Wear safety glasses and work gloves. Use quenching cloths for brazing operations and have a fire extinguisher available. Read these instructions thoroughly and follow all warnings or cautions attached to the unit. Consult local building codes and appropriate national electrical codes (in USA, ANSI/NFPA70, National Electrical Code (NEC); in Canada, CSA C22.1) for special requirements.

It is important to recognize safety information. This is the safety-alert symbol △. When you see this symbol on the unit and in instructions or manuals, be alert to the potential for personal injury.

Understand the signal words DANGER, WARNING, CAUTION, and NOTE. These words are used with the safety-alert symbol. DANGER identifies the most serious hazards which will result in severe personal injury or death. WARNING signifies hazards which could result in personal injury or death. CAUTION is used to identify unsafe practices, which may result in minor personal injury or product and property damage. NOTE is used to highlight suggestions which will result in enhanced installation, reliability, or operation.

### WARNING

**FIRE, EXPLOSION HAZARD**

Failure to follow this warning could result in personal injury or death.

Disconnect gas piping from unit when leak testing at pressure greater than 0.5 psig (3450 Pa). Pressures greater than 0.5 psig (3450 Pa) will cause gas valve damage resulting in hazardous condition. If gas valve is subjected to pressure greater than 0.5 psig (3450 Pa), it must be replaced before use. When pressure testing field-supplied gas piping at pressures of 0.5 psig (3450 Pa) or less, a unit connected to such piping must be isolated by closing the manual gas valve.

### WARNING

**FIRE HAZARD**

Failure to follow this warning could result in personal injury, death, and/or property damage.

Inlet pressure tab set screw must be tightened and 1/8 in. NPT pipe plug must be installed to prevent gas leaks.

### WARNING

**FIRE HAZARD**

Failure to follow this warning could result in personal injury, death, and/or property damage.

Manifold pressure tap set screw must be tightened and 1/8 in. NPT pipe plug must be installed to prevent gas leak.
CARBON-MONOXIDE POISONING HAZARD
Failure to follow instructions could result in severe personal injury or death due to carbon-monoxide poisoning, if combustion products infiltrate into the building.
Check that all openings in the outside wall around the vent (and air intake) pipe(s) are sealed to prevent infiltration of combustion products into the building.
Check that furnace vent (and air intake) terminal(s) are not obstructed in any way during all seasons.

ELECTRICAL SHOCK HAZARD
Failure to follow this warning could cause personal injury or death.
Before performing service or maintenance operations on unit, always turn off main power switch to unit and install lock(s) and lockout tag(s). Unit may have more than one power switch.

UNIT OPERATION AND SAFETY HAZARD
Failure to follow this warning could cause personal injury, death and/or equipment damage.
Puron® (R-410A) refrigerant systems operate at higher pressures than standard R-22 systems. Do not use R-22 service equipment or components on Puron refrigerant equipment.

PERSONAL INJURY AND ENVIRONMENTAL HAZARD
Failure to follow this warning could cause personal injury or death.
Relieve pressure and recover all refrigerant before system repair or final unit disposal.
Wear safety glasses and gloves when handling refrigerants. Keep torches and other ignition sources away from refrigerants and oils.

CUT HAZARD
Failure to follow this caution may result in personal injury.
Sheet metal parts may have sharp edges or burrs. Use care and wear appropriate protective clothing, safety glasses and gloves when handling parts and servicing air conditioning equipment.

Rated Indoor Airflow (cfm)
The following table lists the rated indoor airflow used for the AHRI efficiency rating for the units covered in this document.

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Full Load Airflow (cfm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48LC**04</td>
<td>1050</td>
</tr>
<tr>
<td>48LC**05</td>
<td>1400</td>
</tr>
<tr>
<td>48LC**06</td>
<td>1750</td>
</tr>
</tbody>
</table>
# 48LC 04-06 Model Number Nomenclature (Example)

<table>
<thead>
<tr>
<th>Position</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18</td>
<td>4 8 L C D 0 0 6 A 0 A 5 - 0 A 0 A 0</td>
</tr>
</tbody>
</table>

## Unit Heat Type
48 - Gas Heat Packaged Rooftop

## Model Series - WeatherExpert®
LC - Ultra High Efficiency

## Heat Options
- D = Low Gas Heat
- E = Medium Gas Heat
- F = High Gas Heat
- L = Low Nox – Low Gas Heat
- M = Low Nox – Medium Gas Heat
- N = Low Nox – High Gas Heat
- S = Low Heat w/ Stainless Steel Exchanger
- R = Medium Heat w/ Stainless Steel Exchanger
- T = High Heat w/ Stainless Steel Exchanger

(Low Nox models include – Stainless Steel HX)

## Cooling Tons
- 04 - 3 ton
- 05 - 4 ton
- 06 - 5 ton

## Sensor Options
- A = None
- B = RA Smoke Detector
- C = SA Smoke Detector
- D = RA + SA Smoke Detector
- E = CO₂
- F = RA Smoke Detector and CO₂
- G = SA Smoke Detector and CO₂
- H = RA + SA Smoke Detector and CO₂

## Indoor Fan Options
- 0 = Standard Electrical (Direct) Drive x13 ECM Motor
- 2 = Medium Static Belt Drive with VFD controller
- 3 = High Static Belt Drive with VFD controller

## Coil Options: Fin/Tube (Condenser- Evaporator - Hail Guard)
- A = Al/Cu - Al/Cu
- B = Precoat Al/Cu - Al/Cu
- C = E-coat Al/Cu - Al/Cu
- D = E-coat Al/Cu - E-coat Al/Cu
- E = Cu/Cu - Al/Cu
- F = Cu/Cu - Cu/Cu
- M = Al/Cu - Al/Cu — Louvered Hail Guard
- N = Precoat Al/Cu - Al/Cu — Louvered Hail Guard
- P = E-coat Al/Cu - Al/Cu — Louvered Hail Guard
- Q = E-coat Al/Cu - E-coat Al/Cu — Louvered Hail Guard
- R = Cu/Cu - Al/Cu — Louvered Hail Guard
- S = Cu/Cu - Cu/Cu — Louvered Hail Guard

## Refrig. Systems Options
- 0 = Two stage cooling capacity
- A = Two stage cooling capacity with Humidi-MiZer® System (not available with ComfortLink™ controls)

## Electrical Options
- A = None
- B = HACR Breaker
- C = Non-Fused Disconnect
- D = Thru-The-Base Connections
- E = HACR Breaker with Thru-The-Base Connections
- F = Non-Fused Disconnect and Thru-The-Base Connections

## Packaging
- 0 = Standard
- 1 = LTL

## Service Options
- 0 = None
- 1 = Unpowered Convenience Outlet
- 2 = Powered Convenience Outlet
- 3 = Hinged Panels
- 4 = Hinged Panels and Unpowered Convenience Outlet
- 5 = Hinged Panels and Powered Convenience Outlet

## Intake / Exhaust Options
- A = None
- B = Temperature Economizer with Barometric Relief
- E = Enthalpy Economizer with Barometric Relief
- N = Ultra Low Leak Temperature Economizer with Barometric Relief
- R = Ultra Low Leak Enthalpy Economizer with Barometric Relief

## Base Unit Controls
- 0 = Base Electromechanical Controls
- 1 = RTU Open Multi-Protocol Controller
- 2 = ComfortLink Controls (not available for units equipped with Humidi-MiZer option)

## Design Revision
- - = Factory Design Revision

## Voltage
- 1 = 575/3/60
- 5 = 208-230/3/60
- 6 = 460/3/60

---

Fig. 1 - 48LC 04-06 Model Number Nomenclature (Example)
**Fig. 2 - Unit Dimensional Drawing (cont.)**

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>DIMENSION</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>48-in (1219 mm)</td>
<td>Unit disconnect is mounted on panel</td>
</tr>
<tr>
<td></td>
<td>18-in (457 mm)</td>
<td>No disconnect, convenience outlet option</td>
</tr>
<tr>
<td></td>
<td>18-in (457 mm)</td>
<td>Recommended service clearance</td>
</tr>
<tr>
<td></td>
<td>12-in (305 mm)</td>
<td>Minimum clearance</td>
</tr>
<tr>
<td>B</td>
<td>42-in (1067 mm)</td>
<td>Surface behind servicer is grounded (e.g., metal, masonry wall)</td>
</tr>
<tr>
<td></td>
<td>36-in (914 mm)</td>
<td>Surface behind servicer is electrically non-conductive (e.g., wood, fiberglass)</td>
</tr>
<tr>
<td></td>
<td>Special</td>
<td>Check sources of flue products within 10-ft of unit fresh air intake hood</td>
</tr>
<tr>
<td>C</td>
<td>36-in (914 mm)</td>
<td>Side condensate drain is used</td>
</tr>
<tr>
<td></td>
<td>18-in (457 mm)</td>
<td>Minimum clearance</td>
</tr>
<tr>
<td>D</td>
<td>48-in (1219 mm)</td>
<td>No flue discharge accessory installed, surface is combustible material</td>
</tr>
<tr>
<td></td>
<td>42-in (1067 mm)</td>
<td>Surface behind servicer is grounded (e.g., metal, masonry wall, another unit)</td>
</tr>
<tr>
<td></td>
<td>36-in (914 mm)</td>
<td>Surface behind servicer is electrically non-conductive (e.g., wood, fiberglass)</td>
</tr>
<tr>
<td></td>
<td>Special</td>
<td>Check for adjacent units or building fresh air intakes within 10-ft (3 m) of this unit's flue outlet</td>
</tr>
</tbody>
</table>

**NOTE:** Unit not designed to have overhead obstruction. Contact Application Engineering for guidance on any application planning overhead obstruction or for vertical clearances.

**Fig. 3 - Service Clearance Dimensional Drawing**
INSTALLATION

Jobsite Survey

Complete the following checks before installation.

1. Consult local building codes and the NEC (National Electrical Code) ANSI/NFPA 70 for special installation requirements.
2. Determine unit location (from project plans) or select unit location.
3. Check for possible overhead obstructions which may interfere with unit lifting or rigging.

Step 1 — Plan for Unit Location

Select a location for the unit and its support system (curb or other) that provides for the minimum clearances required for safety. This includes the clearance to combustible surfaces, unit performance and service access below and around unit as specified in Fig. 3.

NOTE: Consider also the effect of adjacent units.

Be sure that unit is installed such that snow will not block the combustion intake or flue outlet.

Unit may be installed directly on wood flooring or on Class A, B, or C roof-covering material when roof curb is used.

Do not install unit in an indoor location. Do not locate air inlets near exhaust vents or other sources of contaminated air. For proper unit operation, adequate combustion and ventilation air must be provided in accordance with Section 5.3 (Air for Combustion and Ventilation) of the National Fuel Gas Code, ANSI Z223.1 (American National Standards Institute) and NFPA (National Fire Protection Association) 54 TIA--54--84--1. In Canada, installation must be in accordance with the CAN1--B149 installation codes for gas burning appliances.

Although unit is weatherproof, avoid locations that permit water from higher level runoff and overhangs to fall onto the unit.

Locate mechanical draft system flue assembly at least 4 ft (1.2 m) from any opening through which combustion products could enter the building, and at least 4 ft (1.2 m) from any adjacent building (or per local code). Locate the flue assembly at least 10 ft (3.05 m) from an adjacent unit’s fresh air intake hood if within 3 ft (0.91 m) of same elevation (or per local code). When unit is located adjacent to public walkways, flue assembly must be at least 7 ft (2.1 m) above grade.

Select a unit mounting system that provides adequate height to allow installation of condensate trap per requirements. Refer to Step 11 — Install External Condensate Trap and Line – for required trap dimensions.

Roof Mount —

Check building codes for weight distribution requirements. Unit operating weight is shown in Table 1.

Step 2 — Plan for Sequence of Unit Installation

The support method used for this unit will dictate different sequences for the steps of unit installation. For example, on curb-mounted units, some accessories must be installed on the unit before the unit is placed on the curb. Review the following for recommended sequences for installation steps.

Curb-mounted Installation —

Install curb
Install field-fabricated ductwork inside curb
Install accessory thru-base service connection package (affects curb and unit) (refer to accessory installation instructions for details)
Prepare bottom condensate drain connection to suit planned condensate line routing (refer to Step 11 for details)
Rig and place unit
Install outdoor air hood
Install flue hood
Install gas piping
Install condensate line trap and piping
Make electrical connections
Install other accessories

Table 1 – Operating Weights

<table>
<thead>
<tr>
<th>48LC**</th>
<th>UNITS LB (KG)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>04</td>
</tr>
<tr>
<td>Base Unit</td>
<td>505 (229)</td>
</tr>
<tr>
<td>Economizer</td>
<td></td>
</tr>
<tr>
<td>Vertical</td>
<td>50 (23)</td>
</tr>
<tr>
<td>Horizontal</td>
<td>80 (36)</td>
</tr>
<tr>
<td>Humidi-MiZer® System</td>
<td>50 (23)</td>
</tr>
<tr>
<td>Cu Fins</td>
<td>25 (11)</td>
</tr>
<tr>
<td>Powered Outlet</td>
<td>35 (16)</td>
</tr>
<tr>
<td>Curb</td>
<td></td>
</tr>
<tr>
<td>14–in/356 mm</td>
<td>115 (52)</td>
</tr>
<tr>
<td>24–in/610 mm</td>
<td>197 (89)</td>
</tr>
</tbody>
</table>
Pad-mounted Installation —
Prepare pad and unit supports
Check and tighten the bottom condensate drain connection plug
Rig and place unit
Convert unit to side duct connection arrangement
Install outdoor air hood
Install flue hood
Install gas piping
Install condensate line trap and piping
Make electrical connections
Install other accessories

Frame-mounted Installation —
Frame-mounted applications generally follow the sequence for a curb installation. Adapt as required to suit specific installation plan.

Step 3 — Inspect Unit
Inspect unit for transportation damage. File any claim with transportation agency.
Confirm before installation of unit that voltage, amperage and circuit protection requirements listed on unit data plate agree with power supply provided.

Step 4 — Provide Unit Support
Roof Curb Mount —
Accessory roof curb details and dimensions are shown in Fig. 5 (see page 9). Assemble and install accessory roof curb in accordance with instructions shipped with the curb.
NOTE: The gasketing of the unit to the roof curb is critical for a watertight seal. Install gasket supplied with the roof curb as shown in Fig. 5. Improperly applied gasket can also result in air leaks and poor unit performance.
Curb should be level. This is necessary for unit drain to function properly. Unit leveling tolerances are show in Fig. 4. Refer to Accessory Roof Curb Installation Instructions for additional information as required.

Fig. 4 - Unit Leveling Tolerances

<table>
<thead>
<tr>
<th></th>
<th>A-B</th>
<th>B-C</th>
<th>A-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXIMUM ALLOWABLE DIFFERENCE IN. (MM)</td>
<td>0.5” (13)</td>
<td>1.0” (25)</td>
<td>1.0” (25)</td>
</tr>
</tbody>
</table>

Install insulation, cant strips, roofing felt, and counter flashing as shown. Ductwork must be attached to curb and not to the unit. The accessory thru-the-base power and gas connection package must be installed before the unit is set on the roof curb. If field-installed thru-the-roof curb gas connections are desired, use factory-supplied 1/2-in. pipe coupling and gas plate assembly to mount the thru-the-roof curb connection to the roof curb. Gas connections and power connections to the unit must be field installed after the unit is installed on the roof curb.

If electric and control wiring is to be routed through the basepan, attach the accessory thru-the-base service connections to the basepan in accordance with the accessory installation instructions.

Slab Mount (Horizontal Units Only) —
Provide a level concrete slab that extends a minimum of 6 in. (150 mm) beyond unit cabinet. Install a gravel apron in front of condenser coil air inlet to prevent grass and foliage from obstructing airflow.
NOTE: Horizontal units may be installed on a roof curb if required.

Alternate Unit Support (In Lieu of Curb or Slab Mount) —
A non-flammable sleeper rail can be used in the unit curb support area. If sleeper rails cannot be used, support the long sides of the unit with a minimum of 3 equally spaced 4-in. x 4-in. (102 mm x 102 mm) pads on each side.

Step 5 — Field Fabricate Ductwork
Cabinet return-air static pressure (a negative condition) shall not exceed 0.35 in. wg (87 Pa) with economizer or 0.45 in. wg (112 Pa) without economizer.
For vertical ducted applications, secure all ducts to roof curb and building structure. Do not connect ductwork to unit.
Fabricate supply ductwork so that the cross sectional dimensions are equal to or greater than the unit supply duct opening dimensions for the first 18 in. (458 mm) of duct length from the unit basepan.
Insulate and weatherproof all external ductwork, joints, and roof openings with counter flashing and mastic in accordance with applicable codes.
Ducts passing through unconditioned spaces must be insulated and covered with a vapor barrier.
If a plenum return is used on a vertical unit, the return should be ducted through the roof deck to comply with applicable fire codes.
A minimum clearance is not required around ductwork.

⚠️ CAUTION

PROPERTY DAMAGE HAZARD
Failure to follow this caution may result in damage to roofing materials.
Membrane roofs can be cut by sharp sheet metal edges. Be careful when placing any sheet metal parts on such roof.
NOTES:
1. ROOF CURB ACCESSORY IS SHIPPED DISASSEMBLED.
2. INSULATED PANELS: 25 4/17" THICK POLYURETHANE FOAM, 44.5 [1 3/4"] # DENSITY.
3. DIMENSIONS IN [ ] ARE IN MILLIMETERS.
4. ROOF CURB: 18 GA. STEEL.
5. ATTACH OUTLET BOX TO CURB (FLANGES OF DUCT REST ON CURB).
6. SERVICE CLEARANCE 4 FEET ON EACH SIDE.
7. DIRECTION OF AIR FLOW.
8. CONNECTOR PACKAGE CRBTMPWR001A01 IS FOR THRU-THE-CURB GAS TYPE.
   PACKAGE CRBTMPWR003A01 IS FOR THRU-THE-BOTTOM TYPE GAS CONNECTIONS.

CRBTMPWR001A01
CRBTMPWR003A01

CONNECTOR PKG. ACC. GAS CONNECTION TYPE GAS FITTING POWER WIRING FITTING CONTROL WIRING FITTING OUTLET WIRING CONNECTOR

CONNECTOR PVC ACC. GAS CONNECTION TYPE GAS FITTING POWER WIRING FITTING CONTROL WIRING FITTING OUTLET WIRING CONNECTOR

FITTING
FITTING
FITTING
FITTING

SECURITY

CERTIFIED DRAWING

RETURN AIR
RETURN AIR
RETURN AIR
RETURN AIR

SUPPLY AIR OPENING
SUPPLY AIR OPENING
SUPPLY AIR OPENING
SUPPLY AIR OPENING

UNIT
UNIT
UNIT
UNIT

NAIL (FIELD SUPPLIED)
NAIL (FIELD SUPPLIED)
NAIL (FIELD SUPPLIED)
NAIL (FIELD SUPPLIED)

TYPICAL (4) SIDES
TYPICAL (4) SIDES
TYPICAL (4) SIDES
TYPICAL (4) SIDES

GASKET (SUPPLIED WITH CURB)
GASKET (SUPPLIED WITH CURB)
GASKET (SUPPLIED WITH CURB)
GASKET (SUPPLIED WITH CURB)

RIGID INSULATION (FIELD SUPPLIED)
RIGID INSULATION (FIELD SUPPLIED)
RIGID INSULATION (FIELD SUPPLIED)
RIGID INSULATION (FIELD SUPPLIED)

Duct (Field Supplied)
Duct (Field Supplied)
Duct (Field Supplied)
Duct (Field Supplied)

CANT STRIP (FIELD SUPPLIED)
CANT STRIP (FIELD SUPPLIED)
CANT STRIP (FIELD SUPPLIED)
CANT STRIP (FIELD SUPPLIED)

COUNTER FLASHING (FIELD SUPPLIED)
COUNTER FLASHING (FIELD SUPPLIED)
COUNTER FLASHING (FIELD SUPPLIED)
COUNTER FLASHING (FIELD SUPPLIED)

ROOFING MATERIAL (FIELD SUPPLIED)
ROOFING MATERIAL (FIELD SUPPLIED)
ROOFING MATERIAL (FIELD SUPPLIED)
ROOFING MATERIAL (FIELD SUPPLIED)

INSULATED DECK PANELS
INSULATED DECK PANELS
INSULATED DECK PANELS
INSULATED DECK PANELS

ROOFING MATERIAL
ROOFING MATERIAL
ROOFING MATERIAL
ROOFING MATERIAL

SUPPLY AIR
SUPPLY AIR
SUPPLY AIR
SUPPLY AIR

RETURN AIR
RETURN AIR
RETURN AIR
RETURN AIR

OPENING
OPENING
OPENING
OPENING

SEE VIEW "B"
SEE VIEW "B"
SEE VIEW "B"
SEE VIEW "B"

CERTIFIED DRAWING

RETURN AIR
RETURN AIR
RETURN AIR
RETURN AIR

SUPPLY AIR OPENING
SUPPLY AIR OPENING
SUPPLY AIR OPENING
SUPPLY AIR OPENING

UNIT
UNIT
UNIT
UNIT

NAIL (FIELD SUPPLIED)
NAIL (FIELD SUPPLIED)
NAIL (FIELD SUPPLIED)
NAIL (FIELD SUPPLIED)

TYPICAL (4) SIDES
TYPICAL (4) SIDES
TYPICAL (4) SIDES
TYPICAL (4) SIDES

GASKET (SUPPLIED WITH CURB)
GASKET (SUPPLIED WITH CURB)
GASKET (SUPPLIED WITH CURB)
GASKET (SUPPLIED WITH CURB)

RIGID INSULATION (FIELD SUPPLIED)
RIGID INSULATION (FIELD SUPPLIED)
RIGID INSULATION (FIELD SUPPLIED)
RIGID INSULATION (FIELD SUPPLIED)

Duct (Field Supplied)
Duct (Field Supplied)
Duct (Field Supplied)
Duct (Field Supplied)

CANT STRIP (FIELD SUPPLIED)
CANT STRIP (FIELD SUPPLIED)
CANT STRIP (FIELD SUPPLIED)
CANT STRIP (FIELD SUPPLIED)

COUNTER FLASHING (FIELD SUPPLIED)
COUNTER FLASHING (FIELD SUPPLIED)
COUNTER FLASHING (FIELD SUPPLIED)
COUNTER FLASHING (FIELD SUPPLIED)

ROOFING MATERIAL (FIELD SUPPLIED)
ROOFING MATERIAL (FIELD SUPPLIED)
ROOFING MATERIAL (FIELD SUPPLIED)
ROOFING MATERIAL (FIELD SUPPLIED)

INSULATED DECK PANELS
INSULATED DECK PANELS
INSULATED DECK PANELS
INSULATED DECK PANELS

ROOFING MATERIAL
ROOFING MATERIAL
ROOFING MATERIAL
ROOFING MATERIAL

SUPPLY AIR
SUPPLY AIR
SUPPLY AIR
SUPPLY AIR

RETURN AIR
RETURN AIR
RETURN AIR
RETURN AIR

OPENING
OPENING
OPENING
OPENING

SEE VIEW "B"
SEE VIEW "B"
SEE VIEW "B"
SEE VIEW "B"
Step 6 — Rig and Place Unit

Keep unit upright and do not drop. Spreader bars are required. Rollers may be used to move unit across a roof. Level by using unit frame as a reference. See Table 1 and Fig. 6 for additional information.

Lifting holes are provided in base rails as shown in Fig. 6. Refer to rigging instructions on unit.

Rigging materials under unit (cardboard or wood) must be removed PRIOR to placing the unit on the roof curb.

When using the standard side drain connection, ensure the red plug in the alternate bottom connection is tight. Do this before setting the unit in place. The red drain pan plug can be tightened with a 1/2-in. square socket drive extension. For further details see “Step 12 - Install External Condensate Trap and Line” on page 16.

UNIT DAMAGE HAZARD
Failure to follow this caution may result in equipment damage.

All panels must be in place when rigging. Unit is not designed for handling by fork truck when packaging is removed.

Before setting the unit onto the curb, recheck gasketing on curb.

---

**CAUTION - NOTICE TO RIGGERS:**

**AVERTISSEMENT - REMARQUE À L’ATTENTION DES MONTEURS**

ALL PANELS MUST BE IN PLACE WHEN RIGGING.

TOUS LES CAPOTS DOIVENT ÊTRE EN PLACE AVANT LE LEVAGE

- Hook rigging shackles through holes in base rail, as shown in Detail “A”.
- Use wooden top skid, when rigging, to prevent rigging straps from damaging unit.
- Max weight includes base unit plus shipping pallet plus all available FIOP’s which could be on that size unit.
- *B* dimension is based on base unit (PAC no heat or YAC w/low heat) plus economizer option only. This dimension may vary slightly with units configured with other FIOP options.
- Spreader bars required to lift and transport the unit.
- Accrocher les manilles des élingues de levages dans les trous situés dans le rail de base comme indiqué au Détail « A ».
- Utiliser des cales en bois lors du levage pour éviter que les élingues n'endommagent le haut de l'appareil.
- Le poids maximum inclut la configuration de base, le poids de la palette d'expédition, ainsi que toutes les options pouvant être installées en usine (FIOP) pour la plateforme sélectionnée.
- La dimension de *B* provient de la configuration de base (PAC sans chauffage ou YAC chauffage au gaz naturel) qui inclut l'option economizer seulement. Cette dimension peut varier légèrement en fonction des différentes options sélectionnées, installées en usine (FIOP).
- Barres d'écartement requises pour soulever et transporter l'unité.

---

### Table 1: Max Weight

<table>
<thead>
<tr>
<th>MODEL</th>
<th>MAX WEIGHT</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>50LC_004</td>
<td>700</td>
<td>318</td>
<td>74.5</td>
<td>1890</td>
</tr>
<tr>
<td>50LC_005</td>
<td>830</td>
<td>377</td>
<td>74.5</td>
<td>1890</td>
</tr>
<tr>
<td>50LC_006</td>
<td>865</td>
<td>393</td>
<td>74.5</td>
<td>1890</td>
</tr>
<tr>
<td>48LC_004</td>
<td>760</td>
<td>345</td>
<td>74.5</td>
<td>1890</td>
</tr>
<tr>
<td>48LC_005</td>
<td>895</td>
<td>407</td>
<td>74.5</td>
<td>1890</td>
</tr>
<tr>
<td>48LC_006</td>
<td>930</td>
<td>423</td>
<td>74.5</td>
<td>1890</td>
</tr>
</tbody>
</table>

---

**Fig. 6 - Rigging Label**
Positioning on Curb —

Position unit on roof curb so that the following clearances are maintained: 1/4 in. (6.4 mm) clearance between the roof curb and the base rail inside the front and rear, 0.0 in. clearance between the roof curb and the base rail inside on the duct end of the unit. This will result in the distance between the roof curb and the base rail inside on the condenser end of the unit being approximately 1/4 in. (6.4 mm).

Although unit is weatherproof, guard against water from higher level runoff and overhangs.

Flue vent discharge must have a minimum horizontal clearance of 4 ft (1220 mm) from electric and gas meters, gas regulators, and gas relief equipment. Minimum distance between unit and other electrically live parts is 48 inches (1220 mm).

Flue gas can deteriorate building materials. Orient unit such that flue gas will not affect building materials. Locate mechanical draft system flue assembly at least 48 in. (1220 mm) from an adjacent building or combustible material.

NOTE: Installation of accessory flue discharge deflector kit will reduce the minimum clearance to combustible material to 18 in. (460 mm).

After unit is in position, remove rigging skids and shipping materials.

Step 7 — Convert to Horizontal and Connect Ductwork (when required)

Unit is shipped in the vertical duct configuration. Unit without factory-installed economizer or return air smoke detector option may be field-converted to horizontal ducted configuration. To convert to horizontal configuration, remove screws from side duct opening covers and remove covers. Using the same screws, install covers on vertical duct openings with the insulation-side down. Seals around duct openings must be tight. See Fig. 7.

Field-supplied flanges should be attached to horizontal duct openings and all ductwork should be secured to the flanges. Insulate and weatherproof all external ductwork, joints, and roof or building openings with counter flashing and mastic in accordance with applicable codes.

Do not cover or obscure visibility to the unit’s informative data plate when insulating horizontal ductwork.

Step 8 — Install Outside Air Hood

Economizer Hood Package Removal and Setup - Factory Option

1. The hood is shipped in knock-down form and must be field assembled. The indoor coil access panel is used as the hood top while the hood sides, divider and filter are packaged together, attached to a metal support tray using plastic stretch wrap, and shipped in the return air compartment behind the indoor coil access panel. The hood assembly’s metal tray is attached to the basepan and also attached to the damper using two plastic tie-wraps.

2. To gain access to the hood, remove the filter access panel. (See Fig. 8.)

Fig. 8 - Typical Access Panel Locations

3. Locate the (2) screws holding the metal tray to the basepan and remove. Locate and cut the (2) plastic tie-wraps securing the assembly to the damper. (See Fig. 9) Be careful to not damage any wiring or cut tie-wraps securing any wiring.
4. Carefully lift the hood assembly (with metal tray) through the filter access opening and assemble per the steps outlined in Economizer Hood.

**Economizer Hood** —

**NOTE**: If the power exhaust accessory is to be installed on the unit, the hood shipped with the unit will not be used and must be discarded. Save the aluminum filter for use in the power exhaust hood assembly.

1. The indoor coil access panel will be used as the top of the hood. Remove the screws along the sides and bottom of the indoor coil access panel. See Fig. 10.

   ![Fig. 10 - Indoor Coil Access Panel Relocation](image1)

2. Swing out indoor coil access panel and insert the hood sides under the panel (hood top). Use the screws provided to attach the hood sides to the hood top. Use screws provided to attach the hood sides to the unit. See Fig. 11.

   ![Fig. 11 - Economizer Hood Construction](image2)

3. Remove the shipping tape holding the economizer barometric relief damper in place (economizer only).

4. Insert the hood divider between the hood sides. See Fig. 11 and 12. Secure hood divider with 2 screws on each hood side. The hood divider is also used as the bottom filter rack for the aluminum filter.

5. Open the filter clips which are located underneath the hood top. Insert the aluminum filter into the bottom filter rack (hood divider). Push the filter into position past the open filter clips. Close the filter clips to lock the filter into place. See Fig. 12.

6. Caulk the ends of the joint between the unit top panel and the hood top.

7. Replace the filter access panel.

   ![Fig. 12 - Economizer Filter Installation](image3)

**Step 9 — Units with Hinged Panels Only**

Relocate latch shipped inside the hinged compressor door to location shown in Fig. 13 after unit installation.

If the unit does not have hinged panels, skip step 9 and continue at step 10.

   ![Fig. 13 - Compressor Door Latch Location](image4)
Step 10 — Install Flue Hood

Flue hood is shipped screwed to the basepan beside the burner compartment access panel. Remove from shipping location and using screws provided, install flue hood and screen in location shown in Fig. 14.

![Fig. 14 - Flue Hood Details](image)

Step 11 — Install Gas Piping

Installation of the gas piping must be accordance with local building codes and with applicable national codes. In U.S.A., refer to NFPA 54/ANSI Z223.1 National Fuel Gas Code (NFGC). In Canada, installation must be accordance with the CAN/CSA B149.1 and CAN/CSA B149.2 installation codes for gas burning appliances.

This unit is factory equipped for use with Natural Gas fuel at elevations up to 2000 ft (610 m) above sea level. Unit may be field converted for operation at elevations above 2000 ft (610 m) and/or for use with liquefied petroleum fuel. See accessory kit installation instructions regarding these accessories.

**NOTE:** Furnace gas input rate on rating plate is for installation up to 2000 ft (610 m) above sea level. In U.S.A. the input rating for altitudes above 2000 ft (610 m) must be derated by 4% for each 1000 ft (305 m) above sea level. In Canada the input rating must be derated by 10% for altitudes of 2000 ft (610 m) to 4500 ft (1372 m) above sea level.

For natural gas applications, gas pressure at unit gas connection must not be less than 4 in. wg (996 Pa) or greater than 13 in. wg (3240 Pa) while the unit is operating. On 48LCF/N/T*05-06 (high-heat) units, the gas pressure at unit gas connection must not be less than 5 in. wg (1245 Pa) or greater than 13 in. wg (3240 Pa) while the unit is operating. For liquified petroleum applications, the gas pressure must not be less than 11 in. wg (2740 Pa) or greater than 13.6 in. wg (3390 Pa) at the unit connection.

### Table 2 – Natural Gas Supply Line Pressure Ranges

<table>
<thead>
<tr>
<th>UNIT MODEL</th>
<th>UNIT SIZE</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>48LCD/E/L/M/S/R*</td>
<td>04, 05, 06</td>
<td>4.0 in. wg (996 Pa)</td>
<td>13.0 in. wg (3240 Pa)</td>
</tr>
<tr>
<td>48LCF/N/T* (High Heat units only)</td>
<td>05, 06</td>
<td>5.0 in. wg (1245 Pa)</td>
<td>13.0 in. wg (3240 Pa)</td>
</tr>
</tbody>
</table>

The gas supply pipe enters the unit at the burner access panel on the front side of the unit, through the long slot at the bottom of the access panel. The gas connection to the unit is made to the 1/2-in. FPT gas inlet port on the unit gas valve.

Manifold pressure is factory-adjusted for NG fuel use. Adjust as required to obtain best flame characteristics.

### Table 4 – Natural Gas Manifold Pressure Ranges

<table>
<thead>
<tr>
<th>UNIT MODEL</th>
<th>UNIT SIZE</th>
<th>HIGH FIRE</th>
<th>LOW FIRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>48LCD/E/L/M/S/R*</td>
<td>04, 05, 06</td>
<td>3.5 in. wg (872 Pa)</td>
<td>1.7 in. Wg (423 Pa)</td>
</tr>
<tr>
<td>48LCF/N/T* (High Heat units only)</td>
<td>05, 06</td>
<td>3.5 in. wg (872 Pa)</td>
<td>1.7 in. Wg (423 Pa)</td>
</tr>
</tbody>
</table>

Manifold pressure for LP fuel use must be adjusted to specified range. Follow instructions in the accessory kit to make initial readjustment.

### Table 5 – Liquid Propane Manifold Pressure Ranges

<table>
<thead>
<tr>
<th>UNIT MODEL</th>
<th>UNIT SIZE</th>
<th>HIGH FIRE</th>
<th>LOW FIRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>48LCD/E/S/R*</td>
<td>04, 05, 06</td>
<td>10.0 in. wg (2490 Pa)</td>
<td>5.0 in. Wg (1245 Pa)</td>
</tr>
<tr>
<td>48LCF/T* (High Heat units only)</td>
<td>05, 06</td>
<td>10.0 in. wg (2490 Pa)</td>
<td>5.0 in. Wg (1245 Pa)</td>
</tr>
</tbody>
</table>

### Table 3 – Liquid Propane Supply Line Pressure Ranges

<table>
<thead>
<tr>
<th>UNIT MODEL</th>
<th>UNIT SIZE</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>48LCD/E/S/R*</td>
<td>04, 05, 06</td>
<td>11.0 in. wg (2740 Pa)</td>
<td>13.0 in. wg (3240 Pa)</td>
</tr>
<tr>
<td>48LCF/T* (High Heat units only)</td>
<td>05, 06</td>
<td>11.0 in. wg (2740 Pa)</td>
<td>13.0 in. wg (3240 Pa)</td>
</tr>
</tbody>
</table>

### Table 6 – Liquid Propane Supply Line Pressure Ranges

<table>
<thead>
<tr>
<th>UNIT MODEL</th>
<th>UNIT SIZE</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>48LCD/E/S/R*</td>
<td>04, 05, 06</td>
<td>11.0 in. wg (2740 Pa)</td>
<td>13.0 in. wg (3240 Pa)</td>
</tr>
</tbody>
</table>

EQUIPMENT DAMAGE HAZARD

Failure to follow this caution may result in damage to equipment.

When connecting the gas line to the unit gas valve, the installer MUST use a backup wrench to prevent damage to the valve.

Install a gas supply line that runs to the unit heating section. Refer to the NFPA 54/NFGC or equivalent code for gas pipe sizing data. Do not use a pipe size smaller than 1/2-in. Size the gas supply line to allow for a maximum pressure drop of 0.5-in wg (124 Pa) between gas regulator source and unit gas valve connection when unit is operating at high-fire flow rate.

The gas supply line can approach the unit in three ways: horizontally from outside the unit (across the roof), thru-curb/under unit basepan (accessory kit required) or through unit basepan (factory-option or accessory kit required). Consult accessory kit installation instructions for details on these installation methods. Observe clearance to gas line components per Fig. 15.
STEEL PIPE NOMINAL DIAMETER (in.) | SPACING OF SUPPORTS X DIMENSION (ft)
---|---
1/2 | 6
3/4 or 1 | 8
1 1/4 or larger | 10

Fig. 15 - Gas Piping Guide
(with Accessory Thru-the-Curb Service Connections)

Factory-Option Thru-Base Connections
(Gas Connections)—

This service connection kit consists of a 1/2-in NPT gas adapter fitting (brass), two 1/2-in electrical bulkhead connectors and a 3/4-in electrical bulkhead connector, all factory-installed in the embossed (raised) section of the unit basepan in the condenser section.

Fig. 16 - Fittings

The thru-base gas connector has male and female threads. The male threads protrude above the basepan of the unit; the female threads protrude below the basepan.

Check tightness of connector lock nuts before connecting gas piping.

Install a 1/2-in NPT street elbow on the thru-base gas fitting. Attach a 1/2-in pipe nipple with minimum length of 16-in (406 mm) (field-supplied) to the street elbow and extend it through the access panel at the gas support bracket. See Fig. 17.

Fig. 17 - Gas Line Piping for 3 to 5 Ton Units Only

Other hardware required to complete the installation of the gas supply line will include a manual shutoff valve, a sediment trap (drip leg) and a ground-joint union. A pressure regulator valve may also be required (to convert gas pressure from pounds to inches of pressure). The manual shutoff valve must be located within 6-ft (1.83 m) of the unit. The union, located in the final leg entering the unit, must be located at least 9-in (230 mm) away from the access panel to permit the panel to be removed for service. If a regulator valve is installed, it must be located a minimum of 4-ft (1220 mm) away from the unit’s flue outlet. Some municipal codes require that the manual shutoff valve be located upstream of the sediment trap. See Figures 18 and 19 for typical piping arrangements for gas piping that has been routed through the sidewall of the curb. See Fig. 20 for typical piping arrangement when thru-base is used. Ensure that all piping does not block access to the unit’s main control box or limit the required working space in front of the control box.

Fig. 18 - Gas Piping
When installing the gas supply line, observe local codes pertaining to gas pipe installations. Refer to the NFPA 54/ANSI Z223.1 NFGC latest edition (in Canada, CAN/CSA B149.1). In the absence of local building codes, adhere to the following pertinent recommendations:

1. Avoid low spots in long runs of pipe. Grade all pipe 1/4-in. in every 15 ft (7 mm in every 5 m) to prevent traps. Grade all horizontal runs downward to risers. Use risers to connect to heating section and to meter.

2. Protect all segments of piping system against physical and thermal damage. Support all piping with appropriate straps, hangers, etc. Use a minimum of one hanger every 6 ft (1.8 m). For pipe sizes larger than 1/2-in., follow recommendations of national codes.

3. Apply joint compound (pipe dope) sparingly and only to male threads of joint when making pipe connections. Use only pipe dope that is resistant to action of liquefied petroleum gases as specified by local and/or national codes. If using PTFE (Teflon) tape, ensure the material is Double Density type and is labeled for use on gas lines. Apply tape per manufacturer’s instructions.

4. Pressure-test all gas piping in accordance with local and national plumbing and gas codes before connecting piping to unit.

**NOTE:** Pressure test the gas supply system after the gas supply piping is connected to the gas valve. The supply piping must be disconnected from the gas valve during the testing of the piping systems when test pressure is in excess of 0.5 psig (3450 Pa). Pressure test the gas supply piping system at pressures equal to or less than 0.5 psig (3450 Pa). The unit heating section must be isolated from the gas piping system by closing the external main manual shutoff valve and slightly opening the ground-joint union.

Check for gas leaks at the field-installed and factory-installed gas lines after all piping connections have been completed. Use soap-and-water solution (or method specified by local codes and/or regulations).

**FIRE OR EXPLOSION HAZARD**

Failure to follow this warning could result in personal injury, death and/or property damage.

- Connect gas pipe to unit using a backup wrench to avoid damaging gas controls.
- Never purge a gas line into a combustion chamber.
- Never test for gas leaks with an open flame. Use a commercially available soap solution made specifically for the detection of leaks to check all connections.
- Use proper length of pipe to avoid stress on gas control manifold.

**NOTE:** If orifice hole appears damaged or it is suspected to have been redrilled, check orifice hole with a numbered drill bit of correct size. Never redrill an orifice. A burr-free and squarely aligned orifice hole is essential for proper flame characteristics.
Step 12 — Install External Condensate Trap and Line

The unit has one 3/4-in. condensate drain connection on the end of the condensate pan and an alternate connection on the bottom. See Fig. 22. Unit airflow configuration does not determine which drain connection to use. Either drain connection can be used with vertical or horizontal applications.

To use the alternate bottom drain connection, remove the red drain plug from the bottom connection (use a 1/2-in. square socket drive extension) and install it in the side drain connection.

The piping for the condensate drain and external trap can be completed after the unit is in place. See Fig. 23.

NOTE: Trap should be deep enough to offset maximum unit static difference. A 4" (102) trap is recommended.

MINIMUM PITCH
1" (25mm) PER
10' (3m) OF LINE

Fig. 22 - Condensate Drain Pan (Side View)

Step 13 — Make Electrical Connections

WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could result in personal injury or death.

Do not use gas piping as an electrical ground. Unit cabinet must have an uninterrupted, unbroken electrical ground to minimize the possibility of personal injury if an electrical fault should occur. This ground may consist of electrical wire connected to unit ground lug in control compartment, or conduit approved for electrical ground when installed in accordance with NEC (National Electrical Code); ANSI/NFPA 70, latest edition (in Canada, Canadian Electrical Code CSA [Canadian Standards Association] C22.1), and local electrical codes.

NOTE: Field-supplied wiring shall conform with the limitations of minimum 63°F (33°C) rise.

Field Power Supply —

If equipped with optional Powered Convenience Outlet: The power source leads to the convenience outlet’s transformer primary are not factory connected. Installer must connect these leads according to required operation of the convenience outlet. If an always-energized convenience outlet operation is desired, connect the source leads to the line side of the unit-mounted disconnect. (Check with local codes to ensure this method is acceptable in your area.) If a de-energize via unit disconnect switch operation of the convenience outlet is desired, connect the source leads to the load side of the unit disconnect. On a unit without a unit-mounted disconnect, connect the source leads to compressor contactor C and indoor fan terminal block (IFTB) pressure lugs with unit field power leads.

Refer to Fig. 38 for power transformer connections and the discussion on connecting the convenience outlet on page 24.

Field power wires are connected to the unit at line-side pressure lugs on compressor contactor C and indoor fan terminal block (IFTB) (see wiring diagram label for control box component arrangement) or at factory-installed option non-fused disconnect switch or HACR. Max wire size is #2ga AWG (copper only) per pole on contactors. #2ga AWG per pole on optional disconnect or HACR and 4/0 AWG per pole on terminal or fuse block on units with single point box. See Fig. 30 and unit label diagram for field power wiring connections.
Fig. 24 - 48LC Control Wiring Diagram
Fig. 25 - 48LC Control Wiring Diagram with Humidi-MiZer®
Fig. 28 - 48LC ComfortLINK Power Wiring Diagram, 208/230V, 460V 3 Phase
Units Without Disconnect or HACR Option

- Disconnect per NEC
- L1 L2 L3
- 208/230-3-60
- 460-3-60
- 575-3-60

Fig. 30 - Power Wiring Connections

**WARNING**

**FIRE HAZARD**

Failure to follow this warning could result in intermittent operation or performance satisfaction.

Do not connect aluminum wire between disconnect switch and 48LC unit. Use only copper wire.

(See Fig. 31.)

Units With Disconnect or HACR Option

- L1
- L2
- L3
- Ground (GR)

Optional Disconnect Switch

Fig. 31 - Disconnect Switch and Unit

Units With Factory-Installed Non-Fused Disconnect or HACR

The factory-installed optional non-fused disconnect (NFD) or HACR switch is located in a weatherproof enclosure located under the main control box. The manual switch handle and shaft is shipped in the disconnect or HACR enclosure. Assemble the shaft and handle to the switch at this point.

Fig. 32 - Location of Non-Fused Disconnect Enclosure

To field install the NFD shaft and handle:

1. Remove the unit front panel (see Fig. 2).
2. Remove (3) hexagon screws on the front cover - (2) on the face of the cover and (1) on the left side cover.
3. Remove the front cover of the NFD enclosure.
4. Make sure the NFD shipped from the factory is at OFF position (the arrow on the black handle knob is at OFF).
5. Insert the shaft with the cross pin on the top of the shaft in the horizontal position.
6. Measure from the tip of the shaft to the top surface of the black pointer; the measurement should be 3.75 - 3.88 in. (95 - 99 mm).
7. Tighten the locking screw to secure the shaft to the NFD.
8. Turn the handle to the OFF position with red arrow pointing at OFF.
9. Install the handle on to the painted cover horizontally with the red arrow pointing to the left.
10. Secure the handle to the painted cover with (2) screws and lock washers supplied.
11. Engaging the shaft into the handle socket, re-install (3) hexagon screws on the front cover.
12. Re-install the unit front panel.

Fig. 33 - Handle and Shaft Assembly for NFD
To field install the HACR shaft and handle:

1. Remove the unit front panel (see Fig. 2).
2. Remove (3) hexagon screws on the front cover - (2) on the face of the cover and (1) on the left side cover.
3. Remove the front cover of the HACR enclosure.
4. Make sure the HACR shipped from the factory is at OFF position (the white arrow pointing at OFF).
5. Insert the shaft all the way with the cross pin on the top of the shaft in the horizontal position.
6. Tighten the locking screw to secure the shaft to the HACR.
7. Turn the handle to the OFF position with red arrow pointing at OFF.
8. Install the handle on to the painted cover horizontally with the red arrow pointing to the left.
9. Secure the handle to the painted cover with (2) screws and lock washers supplied.
10. Engaging the shaft into the handle socket, re-install (3) hexagon screws on the front cover.
11. Re-install the unit front panel.

Units Without Factory-Installed Non-Fused Disconnect or HACR —

When installing units, provide a disconnect switch per NEC (National Electrical Code) of adequate size. Disconnect sizing data is provided on the unit informative plate. Locate on unit cabinet or within sight of the unit per national or local codes. Do not cover unit informative plate if mounting the disconnect on the unit cabinet.

All Units —

All field wiring must comply with NEC and all local codes. Size wire based on MCA (Minimum Circuit Amps) on the unit informative plate. See Fig. 30 and the unit label diagram for power wiring connections to the unit power terminal blocks and equipment ground. Maximum wire size is #2ga AWG per pole on contactors. #2ga AWG per pole on optional disconnect or HACR. See Fig. 30 and unit label diagram for field power wiring connections.

Provide a ground-fault and short-circuit over-current protective device (fuse or breaker) per NEC Article 440 (or local codes). Refer to unit informative data plate for MOCP (Maximum Over-current Protection) device size.

NOTE: Units ordered with factory installed HACR do not need an additional ground-fault and short-circuit over-current protective device unless required by local codes.

All field wiring must comply with the NEC and local requirements.

All units except 208/230-v units are factory wired for the voltage shown on the nameplate. If the 208/230-v unit is to be connected to a 208-v power supply, the control transformer must be rewired by moving the black wire with the 1/4-in. female spade connector from the 230-v connection and moving it to the 200-v 1/4-in. male terminal on the primary side of the transformer. Refer to unit label diagram for additional information.

NOTE: Check all factory and field electrical connections for tightness.

Convenience Outlets —

WARNING

ELECTRICAL OPERATION HAZARD

Failure to follow this warning could result in personal injury or death.

Units with convenience outlet circuits may use multiple disconnects. Check convenience outlet for power status before opening unit for service. Locate its disconnect switch, if appropriate, and switch to off position. Lock-out and tag-out this switch, if necessary.

Two types of convenience outlets are offered on 48LC models: Non-powered and unit-powered. Both types provide a 125-volt GFCI (ground-fault circuit-interrupter) duplex receptacle rated at 15-A behind a hinged waterproof access cover, located on the end panel of the unit. See Fig. 36.
Installing Weatherproof Cover: A weatherproof while-in-use cover for the factory-installed convenience outlets is now required by UL standards. This cover cannot be factory-mounted due its depth; it must be installed at unit installation. For shipment, the convenience outlet is covered with a blank cover plate.

The weatherproof cover kit is shipped in the unit’s control box. The kit includes the hinged cover, a backing plate and gasket.

DISCONNECT ALL POWER TO UNIT AND CONVENIENCE OUTLET. LOCK-OUT AND TAG-OUT ALL POWER.

Remove the blank cover plate at the convenience outlet; discard the blank cover.

Loosen the two screws at the GFCI duplex outlet, until approximately 1/2-in (13 mm) under screw heads are exposed. Press the gasket over the screw heads. Slip the backing plate over the screw heads at the keyhole slots and align with the gasket; tighten the two screws until snug (do not over-tighten).

Mount the weatherproof cover to the backing plate as shown in Fig. 37. Remove two slot fillers in the bottom of the cover to permit service tool cords to exit the cover. Check for full closing and latching.

Non-powered type: This type requires the field installation of a general-purpose 125-volt 15-A circuit powered from a source elsewhere in the building. Observe national and local codes when selecting wire size, fuse or breaker requirements and disconnect switch size and location. Route 125-v power supply conductors into the bottom of the utility box containing the duplex receptacle.

Unit-powered type: A unit-mounted transformer is factory-installed to stepdown the main power supply voltage to the unit to 115-v at the duplex receptacle. This option also includes a manual switch with fuse, located in a utility box and mounted on a bracket behind the convenience outlet; access is through the unit’s control box access panel. See Fig. 36.

The primary leads to the convenience outlet transformer are not factory-connected. Selection of primary power source is a customer-option. If local codes permit, the transformer primary leads can be connected at the line-side terminals on the unit-mounted non-fused disconnect or HACR breaker switch; this will provide service power to the unit when the unit disconnect switch or HACR switch is open. Other connection methods will result in the convenience outlet circuit being de-energized when the unit disconnect or HACR switch is open. See Fig. 38.

**Fig. 37 - Weatherproof Cover Installation**

**Fig. 38 - Powered Convenience Outlet Wiring**

Using unit-mounted convenience outlets: Units with unit-mounted convenience outlet circuits will often require that two disconnects be opened to de-energize all power to the unit. Treat all units as electrically energized until the convenience outlet power is also checked and de-energization is confirmed. Observe National Electrical Code Article 210, Branch Circuits, for use of convenience outlets.

<table>
<thead>
<tr>
<th>UNIT VOLTAGE</th>
<th>CONNECT AS</th>
<th>PRIMARY CONNECTIONS</th>
<th>TRANSFORMER TERMINALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>208, 230</td>
<td>240</td>
<td>L1: RED + YEL</td>
<td>H1 + H3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L2: BLU + GRA</td>
<td>H2 + H4</td>
</tr>
<tr>
<td>460</td>
<td>480</td>
<td>L1: RED</td>
<td>H1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Splice BLU + YEL</td>
<td>H2 + H3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L2: GRA</td>
<td>H4</td>
</tr>
<tr>
<td>575</td>
<td>600</td>
<td>L1: RED</td>
<td>H1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L2: GRA</td>
<td>H2</td>
</tr>
</tbody>
</table>
Fuse on power type: The factory fuse is a Bussman “Fusetron” T-15, non-renewable screw-in (Edison base) type plug fuse.

**NOTICE**

Convenience Outlet Utilization

Maximum Continuous use: 8 Amps 24/7

Fig. 39 - Convenience Outlet Utilization Notice Label

Duty Cycle: the unit-powered convenience outlet has a duty cycle limitation. The transformer is intended to provide power on an intermittent basis for service tools, lamps, etc; it is not intended to provide 15-amps loading for continuous duty loads (such as electric heaters for overnight use). Observe a 50% limit on circuit loading above 8-amps.

Convenience outlet usage rating:

Continuous usage: 8 amps maximum

Test the GFCI receptacle by pressing the TEST button on the face of the receptacle to trip and open the receptacle. Check for proper grounding wires and power line phasing if the GFCI receptacle does not trip as required. Press the RESET button to clear the tripped condition.

HACR —

The amp rating of the HACR factory installed option is based on the size, voltage, indoor motor and other electrical options of the unit as shipped from the factory. If field installed accessories are added or changed in the field (i.e. electric heat, power exhaust, ERV), the HACR may no longer be of the proper amp rating and therefore will need to be removed from the unit. See unit nameplate and label on factory installed HACR for the amp rating of the HACR that was shipped with the unit from the factory. See unit nameplates for the proper fuse, HACR or maximum over-current protection device required on the unit with field installed accessories.

Factory-Option Thru-Base Connections (Electrical Connections) —

This service connection kit consists of a 1/2-in NPT gas adapter fitting (brass), a 1/2-in electrical bulkhead connector and a 3/4-in electrical bulkhead connector, all factory-installed in the embossed (raised) section of the unit basepan in the condenser section. The 3/4-in bulkhead connector enables the low-voltage control wires to pass through the basepan. The 1/2-in electrical bulkhead connector allows the high-voltage power wires to pass through the basepan. See Fig. 16. Check tightness of connector lock nuts before connecting electrical conduits.

Field-supplied and field-installed liquid tight conduit connectors and conduit may be attached to the connectors on the basepan. Pull correctly rated high voltage and low voltage through appropriate conduits. Connect the power conduit to the internal disconnect (if unit is so equipped) or to the external disconnect (through unit side panel). A hole must be field cut in the main control box bottom on the left side so the 24-v control connections can be made. Connect the control power conduit to the unit control box at this hole.

Units without Thru-Base Connections —

1. Install power wiring conduit through side panel openings. Install conduit between disconnect and control box.

2. Install power lines to terminal connections as shown in Fig. 30.

Voltage to compressor terminals during operation must be within voltage range indicated on unit nameplate. See Tables 8 and 9. On 3-phase units, voltages between phases must be balanced within 2% and the current within 10%. Use the formula shown in the legend for Tables 8 and 9., Note 2 to determine the percent of voltage imbalance. Operation on improper line voltage or excessive phase imbalance constitutes abuse and may cause damage to electrical components. Such operation would invalidate any applicable Carrier warranty.

Field Control Wiring —

The 48LC unit requires an external temperature control device. This device can be a thermostat (field-supplied) or, the RTU Open Controller for Building Management Systems using non-CCN protocols (RTU Open is available as a factory-installed option only), or a space temperature sensor (SPT) with factory installed ComfortLINK controller.

Thermostat —

Install a Carrier-approved accessory thermostat according to installation instructions included with the accessory. For complete economizer function and 2 stage compressor operation, select a two-stage cooling thermostat. Locate the thermostat accessory on a solid wall in the conditioned space to sense average temperature in accordance with the thermostat installation instructions.

If the thermostat contains a logic circuit requiring 24-v power, use a thermostat cable or equivalent single leads of different colors with minimum of seven leads. If the thermostat does not require a 24-v source (no “C”
connection required), use a thermostat cable or equivalent with minimum of six leads. Check the thermostat installation instructions for additional features which might require additional conductors in the cable.

For wire runs up to 50 ft. (15 m), use no. 18 AWG (American Wire Gage) insulated wire [35°C (95°F) minimum]. For 50 to 75 ft. (15 to 23 m), use no. 16 AWG insulated wire [35°C (95°F) minimum]. For over 75 ft. (23 m), use no. 14 AWG insulated wire [35°C (95°F) minimum]. All wire sizes larger than no. 18 AWG cannot be directly connected to the thermostat and will require a junction box and splice at the thermostat.

**Field Wiring**

**Central Terminal Board**

| X | C | T | E | R | M | O | S | T | A | T |

** Typical Thermostat Connections **

- **Note 1:** Typical multi-function marking. Follow manufacturer’s configuration instructions to select Y2.
- **Note 2:** Y2 to Y2 connection required for 2 stage cooling operation and when integrated economizer function is desired.

Fig. 41 - Low-Voltage Connections

**Unit without Thru-Base Connection Kit —**

Pass the thermostat control wires through the hole provided in the corner post; then feed the wires through the raceway built into the corner post to the control box. Pull the wires over to the terminal strip on the upper-left corner of the Controls Connection Board. See Fig. 42.

**Fig. 42 - Field Control Wiring Raceway**

**Heat Anticipator Settings —**

Set heat anticipator settings at 0.14 amp for the first stage and 0.14 amp for second-stage heating, when available.

**Humidi-MiZer® Control Connections**

**NOTE:** It is suggested to ensure the Auto-Changeover function of an installed thermostat is enabled when used in conjunction with the Humidi-MiZer Adaptive Dehumidification system.

**Humidi-MiZer – Space RH Controller —**

The Humidi-MiZer dehumidification system requires a field-supplied and -installed space relative humidity control device. This device may be a separate humidistat control (contact closes on rise in space RH above control setpoint) or a combination thermostat-humidistat control device such as Carrier’s EDGE® Pro Thermostat with isolated contact set for dehumidification control. The humidistat is normally used in applications where a temperature control is already provided (units with ComfortLINK or RTU Open controls).

**To connect the Carrier humidistat (HL38MG029):**

1. Route the humidistat 2-conductor cable (field-supplied) through the hole provided in the unit corner post.
2. Feed wires through the raceway built into the corner post (see Fig. 42) to the 24-v barrier located on the left side of the control box. The raceway provides the UL-required clearance between high-voltage and low-voltage wiring.
3. Use wire nuts to connect humidistat cable to the leads in the low-voltage wiring (as shown in Fig. 45), connecting PKN to PNK and PNK/BLK to PNK/BLK.

**To connect the Thermidistat device (33CS2PPRH-03):**

1. Route the Thermidistat multi-conductor thermostat cable (field-supplied) through the hole provided in the unit corner post.
2. Feed wires through the raceway built into the corner post (see Fig. 42) to the 24-v barrier located on the left side of the control box. The raceway provides the UL-required clearance between high-voltage and low-voltage wiring.
3. The Thermidistat has dry contacts at terminals D1 and D2 for dehumidification operation (see Fig. 46). The dry contacts must be wired between CTB terminal R and the PNK/BLK lead to the LTLO switch with field-supplied wire nuts. Refer to the installation instructions included with the Carrier Edge Thermostat device (Form 33CS-74SI or latest) for more information.
Fig. 43 - Accessory Field-Installed Humidistat

Fig. 44 - EDGE Pro Thermidistat

Fig. 45 - Typical Humidi-MiZer® Adaptive Dehumidification System Humidistat Wiring
**Fig. 46 - Typical Rooftop Unit with Humidi-MiZer Adaptive Dehumidification System with EDGE Pro Thermostat Device**

**EconoMi$er® X (Factory-Installed Option)**

For details on operating 48LC units equipped with the factory-installed EconoMi$er X option, refer to *EconoMi$er X Factory-Installed Option Low Leak Economizer for 2 Speed SAV™ (Staged Air Volume) Systems* (Catalog No. LLECON-02SI, or later).

→ **SystemVu™ Controller (Factory-Installed Option)**

For details on operating 48LC units equipped with the factory-installed SystemVu control option refer to *48/50LC 04-26 Single Package Rooftop Units with SystemVu Controls Version 2.X Controls, Start-up, Operation and Troubleshooting* manual.

**ComfortLINK (Factory-Installed Option)**

For details on operating 48LC units equipped with the factory-installed ComfortLINK option, refer to *Controls, Start-Up, Operation and Troubleshooting for 48/50LC 04-06 Single Package Rooftop Unit with ComfortLINK Controls* (Catalog No. 48-50LC-C01T, or later).

**NOTE**: ComfortLINK is not available on units equipped with Humidi-MiZer.

**Fig. 47 - 48LC Control Box Component Locations with ComfortLINK**
Fig. 48 - ComfortLINK Control Wiring Diagram (48LC 3-5 Ton Units)
The RTU Open control system is factory-mounted in the 48LC unit’s main control box, to the left of the CTB. See Fig. 50. Factory wiring is completed through harnesses connected to the CTB. Field connections for RTU Open sensors will be made at the Phoenix connectors on the RTU Open board. The factory-installed RTU Open control includes the supply-air temperature (SAT) sensor. The outdoor air temperature (OAT) sensor is included in the FIOP/accessory EconoMi$er® 2 package.

The RTU Open controller is an integrated component of the Carrier rooftop unit. Its internal application programming provides optimum performance and energy efficiency. RTU Open enables the unit to run in 100% stand-alone control mode, Carrier’s I-Vu Open network, or a Third Party Building Automation System (BAS). On-board DIP switches allow you to select your protocol (and baud rate) of choice among the four most popular protocols in use today: BACnet, Modbus, Johnson N2 and LonWorks. (See Fig. 49.)

Refer to Table 6, RTU Open Controller Inputs and Outputs for locations of all connections to the RTU Open board.

![Fig. 49 - RTU Open Multi-Protocol Control Board](image1)

![Fig. 50 - 48LC Control Box Component Locations with RTU Open](image2)
Fig. 51 - RTU Open System Control Wiring Diagram
Fig. 52 - RTU Open System Control Wiring Diagram with Humidi-MiZer®
### Table 6 – RTU Open Controller Inputs and Outputs

<table>
<thead>
<tr>
<th>POINT NAME</th>
<th>BACnet OBJECT NAME</th>
<th>TYPE OF I/O</th>
<th>CONNECTION PIN NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>DEDICATED INPUTS</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Temp / Zone Temp</td>
<td>zone_temp</td>
<td>AI (10K Thermistor)</td>
<td>J20–1 &amp; 2</td>
</tr>
<tr>
<td>Supply Air Temperature</td>
<td>sa_temp</td>
<td>AI (10K Thermistor)</td>
<td>J2–1 &amp; 2</td>
</tr>
<tr>
<td>Outdoor Air Temperature</td>
<td>oa_temp</td>
<td>AI (10K Thermistor)</td>
<td>J2–3 &amp; 4</td>
</tr>
<tr>
<td>Space Temperature Offset Pot</td>
<td>stpt_adj_offset</td>
<td>AI (100K Potentiometer)</td>
<td>J20–3 &amp; 4</td>
</tr>
<tr>
<td>Safety Chain Feedback</td>
<td>safety_status</td>
<td>DI (24 VAC)</td>
<td>J1–9</td>
</tr>
<tr>
<td>Compressor Safety Status</td>
<td>comp_status</td>
<td>DI (24 VAC)</td>
<td>J1–2</td>
</tr>
<tr>
<td>Fire Shutdown Status</td>
<td>firedown_status</td>
<td>DI (24 VAC)</td>
<td>J1–10</td>
</tr>
<tr>
<td>Enthalpy Status</td>
<td>enthalpy_status</td>
<td>DI (24 VAC)</td>
<td>J2–6 &amp; 7</td>
</tr>
<tr>
<td>Humidistat Input Status</td>
<td>humstat_status</td>
<td>DI (24 VAC)</td>
<td>J5–7 &amp; 8</td>
</tr>
<tr>
<td>Zone Temperature</td>
<td>n/a</td>
<td>n/a</td>
<td>J13–1, 2, 3, 4</td>
</tr>
<tr>
<td><strong>CONFIGURABLE INPUTS</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indoor Air CO2</td>
<td>iaq</td>
<td>AI (4–20 ma)</td>
<td>J4–2 or J4–5 &amp; 6</td>
</tr>
<tr>
<td>Outdoor Air CO2</td>
<td>oaq</td>
<td>AI (4–20 ma)</td>
<td></td>
</tr>
<tr>
<td>Space Relative Humidity</td>
<td>space_rh</td>
<td>AI (4–20 ma)</td>
<td>J5–1 or J5–3 or J5–5</td>
</tr>
<tr>
<td>Supply Fan Status*</td>
<td>sfan_status</td>
<td>DI (24 VAC)</td>
<td>J5–1 or J5–3 or J5–5</td>
</tr>
<tr>
<td>Filter Status*</td>
<td>filter_status</td>
<td>DI (24 VAC)</td>
<td></td>
</tr>
<tr>
<td>Door Contact Input*</td>
<td>door_contact_status</td>
<td>DI (24 VAC)</td>
<td></td>
</tr>
<tr>
<td>Occupancy Contact*</td>
<td>occ_contact_status</td>
<td>DI (24 VAC)</td>
<td></td>
</tr>
<tr>
<td><strong>OUTPUTS</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economizer Output</td>
<td>econ_output</td>
<td>AO (4–20 ma)</td>
<td>J2–5</td>
</tr>
<tr>
<td>Supply Fan Relay State</td>
<td>sfan</td>
<td>DO Relay (24VAC, 1A)</td>
<td>J1–4</td>
</tr>
<tr>
<td>Compressor 1 Relay State</td>
<td>comp_1</td>
<td>DO Relay (24VAC, 1A)</td>
<td>J1–8</td>
</tr>
<tr>
<td>Compressor 2 Relay State</td>
<td>comp_2</td>
<td>DO Relay (24VAC, 1A)</td>
<td>J1–7</td>
</tr>
<tr>
<td>Heat Stage 1 Relay State</td>
<td>heat_1</td>
<td>DO Relay (24VAC, 1A)</td>
<td>J1–6</td>
</tr>
<tr>
<td>Heat Stage 2 Relay State</td>
<td>heat_2</td>
<td>DO Relay (24VAC, 1A)</td>
<td>J1–5</td>
</tr>
<tr>
<td>Power Exhaust Relay State</td>
<td>pexh</td>
<td>DO Relay (24VAC, 1A)</td>
<td>J11–1 &amp; 3</td>
</tr>
<tr>
<td>Humidimzer Relay State</td>
<td>dehum</td>
<td>DO Relay (24VAC, 1A)</td>
<td>J11–7, 8</td>
</tr>
</tbody>
</table>

**Legend**

AI = Analog Input  
AO = Analog Output  
DI = Discrete Input  
DO = Discrete Output

* These inputs (if installed) take the place of the default input on the specific channel according to schematic. Parallel pins J5–1 = J2–6, J5–3 = J1–10, J5–5 = J1–2 are used for field – installation.

The RTU Open controller requires the use of a Carrier space sensor. A standard thermostat cannot be used with the RTU Open system.

**Supply Air Temperature (SAT) Sensor —**

On FIO-equipped 48LC unit, the unit is supplied with a supply-air temperature (SAT) sensor (33ZCSENSAT). This sensor is a tubular probe type, approx 6-inches (152 mm) in length. It is a nominal 10-k ohm thermostor.

The SAT is factory-wired. The SAT probe is wire-tied to the supply-air opening (on the horizontal opening end) in its shipping position. Remove the sensor for installation. Re-position the sensor in the flange of the supply-air opening or in the supply air duct (as required by local codes). Drill or punch a 1/2-in. hole in the flange or duct. Use two field-supplied, self-drilling screws to secure the sensor probe in a horizontal orientation. See Fig. 53.

![Fig. 53 - Typical Mounting Location for Supply Air Temperature (SAT) Sensor on Small Rooftop Units](image-url)
Outdoor Air Temperature (OAT) Sensor —

The OAT is factory-mounted in the EconoMiSer® 2 (FIOP or accessory). It is a nominal 10k ohm thermistor attached to an eyelet mounting ring.

EconoMiSer2 —

The RTU Open control is used with EconoMiSer2 (option or accessory) for outdoor air management. The damper position is controlled directly by the RTU Open control; EconoMiSer2 has no internal logic device.

Outdoor air management functions can be enhanced with field-installation of these accessory control devices:

- Enthalpy control (outdoor air or differential sensors)
- Space CO₂ sensor
- Outdoor air CO₂ sensor

Field Connections

Field connections for accessory sensors and input devices are made at the RTU Open, at plugs J1, J2, J4, J5, J11 and J20. All field control wiring that connects to the RTU Open must be routed through the raceway built into the corner post as shown in Fig. 42. The raceway provides the UL required clearance between high- and low-voltage wiring. Pass the control wires through the hole provided in the corner post, then feed the wires through the raceway to the RTU Open. Connect to the wires to the removable Phoenix connectors and then reconnect the connectors to the board.

Space Temperature (SPT) Sensors —

There are two types of SPT sensors available from Carrier, resistive input non-communicating (T55, T56, and T59) and Rnet communicating (SPS, SPPL, SPP, and SPPF) sensors. Each type has a variety of options consisting of: timed override button, set point adjustment, a LCD screen, and communication tie in. Space temperature can be also be written to from a building network or zoning system. However, it is still recommended that return air duct sensor be installed to allow stand-alone operation for back-up. Refer to the configuration section for details on controller configurations associated with space sensors.

- 33ZCT55SPT, space temperature sensor with override button (T-55)
- 33ZCT56SPT, space temperature sensor with override button and setpoint adjustment (T-56)
- 33ZCT59SPT, space temperature sensor with LCD (liquid crystal display) screen, override button, and setpoint adjustment (T-59)

Use 20 gauge wire to connect the sensor to the controller. The wire is suitable for distances of up to 500 ft. Use a three-conductor shielded cable for the sensor and setpoint adjustment connections. If the setpoint adjustment (slidebar) is not required, then an unshielded, 18 or 20 gauge, two-conductor, twisted pair cable may be used.

Connect T-55: See Fig. 54 for typical T-55 internal connections. Connect the T-55 SEN terminals to RTU Open J20-1 and J20-2. See Fig. 55.
**Connect T-59:** The T-59 space sensor requires a separate, isolated power supply of 24 VAC. See Fig. 58 for internal connections at the T-59. Connect the SEN terminal (BLU) to RTU Open J20-1. Connect the COM terminal (BRN) to J20-2. Connect the SET terminal (STO or BLK) to J20-3.

![Fig. 58 - Space Temperature Sensor Typical Wiring](33ZCT59SPT)

**Indoor Air Quality (CO2) Sensor**

The indoor air quality sensor accessory monitors space carbon dioxide (CO2) levels. This information is used to monitor IAQ levels. Several types of sensors are available, for wall mounting in the space or in return duct, with and without LCD display, and in combination with space temperature sensors. Sensors use infrared technology to measure the levels of CO2 present in the space air.

The CO2 sensors are all factory set for a range of 0 to 2000 ppm and a linear mA output of 4 to 20. Refer to the instructions supplied with the CO2 sensor for electrical requirements and terminal locations. See Fig. 59 for typical CO2 sensor wiring schematic.

To accurately monitor the quality of the air in the conditioned air space, locate the sensor near a return-air grille (if present) so it senses the concentration of CO2 leaving the space. The sensor should be mounted in a location to avoid direct breath contact.

Do not mount the IAQ sensor in drafty areas such as near supply ducts, open windows, fans, or over heat sources. Allow at least 3 ft (0.9 m) between the sensor and any corner. Avoid mounting the sensor where it is influenced by the supply air; the sensor gives inaccurate readings if the supply air is blown directly onto the sensor or if the supply air does not have a chance to mix with the room air before it is drawn into the return airstream.

**Wiring the Indoor Air Quality Sensor:** For each sensor, use two 2-conductor 18 AWG (American Wire Gage) twisted-pair cables (unshielded) to connect the separate isolated 24 vac power source to the sensor and to connect the sensor to the control board terminals.

To connect the sensor to the control, identify the positive (4 to 20 mA) and ground (SIG COM) terminals on the sensor. See Fig. 59. Connect the 4-20 mA terminal to RTU Open J4-2 and connect the SIG COM terminal to RTU Open J4-3. See Fig. 60.

![Fig. 60 - RTU Open / Outdoor CO2 Sensor](33ZCSPTCO2-01 or 33ZCSPTCO2LCD-01) Connections
Outdoor Air Quality Sensor (PNO 33ZCSENCO2 plus weatherproof enclosure) —

The outdoor air CO₂ sensor is designed to monitor carbon dioxide (CO₂) levels in the outside ventilation air and interface with the ventilation damper in an HVAC system. The OAQ sensor is packaged with an outdoor cover. See Fig. 61. The outdoor air CO₂ sensor must be located in the economizer outside air hood.

Fig. 61 - Outdoor Air Quality Sensor Cover

Wiring the Outdoor Air CO₂ Sensor: A dedicated power supply is required for this sensor. A two-wire cable is required to wire the dedicated power supply for the sensor. The two wires should be connected to the power supply and terminals 1 and 2.

To connect the sensor to the control, identify the positive (4 to 20 mA) and ground (SIG COM) terminals on the OAQ sensor. See Fig. 59. Connect the 4 to 20 mA terminal to RTU Open J4-5. Connect the SIG COM terminal to RTU Open J4-6.

OAQ Sensor

24 VAC

Fig. 62 - RTU Open / Outdoor CO₂ Sensor (33ZCSENCO2) Connections

Space Relative Humidity Sensor or Humidistat —

Humidi-MiZer® Control Wiring: In units equipped with the Humidi-MiZer option there are two loose wires loose in the control box (one PNK and one PNK/BLK) used to control the dehumidification function of the unit. These wires are meant to be tied to a space humidistat or thermidistat on an electromechanical unit. On RTU Open equipped units these wires must be connected to J11-7 & 8 to allow the Open board to operate the dehumidification function for the unit. Disconnect the J11 Phoenix style connector from the board and use the plug screws to secure the wires as follows: secure the PNK/BLK wires at pin 7 and the PNK wires at pin 8, and then reconnect the plug to the board at J11.

Relative Humidity Sensors (Space or Duct Mounted): The accessory space humidity sensor (33ZCSENSRH-01) or duct humidity sensor (33ZCSENRH-01) is used to measure the relative humidity of air within the space or return air duct. For wiring distances up to 500 ft (152 m), use a 3-conductor, 18 or 20 AWG shielded cable. The shield must be removed from the sensor end of the cable and grounded at the unit end. The current loop power for sensor is provided by the RTU Open controller as 24vdc. Refer to the instructions supplied with the RH sensor for the electrical requirements and terminal locations. RTU Open configurations must be changed after adding an RH sensor. See Fig. 63 and 64 for typical RH sensor wiring.

• J4-1 or J4-4 = 24vdc loop power
• J4-2 or J4-5 = 4-20mA signal input

NOTE: The factory default for dehumidification control is normally open humidistat.
Humidistat: The accessory humidistat provides the RTU Open insight to the relative humidity in the space. The humidistat reads the RH level in the space and compares it to its setpoint to operate a dry contact. The humidistat is a dedicated input on the configurable input 9 and tells the RTU Open when the RH level is HIGH or LOW. The normal condition for humidity is LOW.

To wire in the field:
• J5-8 = 24 VAC source for dry contact
• J5-7 = Signal input

Smoke Detector/Fire Shutdown (FSD) —

On 48LC units equipped with factory-installed Smoke Detector(s), the smoke detector controller implements the unit shutdown through its NC contact set connected to the unit’s CTB input. The FSD function is initiated via the smoke detector’s Alarm NO contact set. The RTU Open controller communicates the smoke detector’s tripped status to the BAS building control. See Fig. 51 (RTU Open System Control wiring schematic).

The Fire Shutdown Switch configuration, MENU → Config → Inputs → input 5, identifies the normally open status of this input when there is no fire alarm.

Connecting Discrete Inputs —

Filter Status: The filter status accessory is a field-installed accessory. This accessory detects plugged filters. When installing this accessory, the unit must be configured for filter status by setting MENU → Config → Inputs → input 3, 5, 8, or 9 to Filter Status and normally open (N/O) or normally closed (N/C). Input 8 or 9 is recommended for easy of installation. Refer to Fig. 49 and Fig. 51 for wire terminations at J5.

Fan Status: The fan status accessory is a field-installed accessory. This accessory detects when the indoor fan is blowing air. When installing this accessory, the unit must be configured for fan status by setting MENU → Config → Inputs → input 3, 5, 8, or 9 to Fan Status and normally open (N/O) or normally closed (N/C). Input 8 or 9 is recommended for easy of installation. Refer to Fig. 49 and Fig. 51 for wire terminations at J5.

Remote Occupancy: The remote occupancy accessory is a field-installed accessory. This accessory overrides the unoccupied mode and puts the unit in occupied mode. When installing this accessory, the unit must be configured for remote occupancy by setting MENU → Config → Inputs → input 3, 5, 8, or 9 to Remote Occupancy and normally open (N/O) or normally closed (N/C).

Also set MENU → Schedules → occupancy source to DI on/off. Input 8 or 9 is recommended for easy of installation. Refer to Fig. 49 and Table 6 for wire terminations at J5.

Power Exhaust (output): The relay used by the RTU Open board to control power exhaust is a dry contact which means it does not have 24vac. This 24vac must be connected to the relay to allow it to operate the power exhaust relay in the PE accessory. A 24vac source must be provided to J11-2 on the RTU Open control board. This can be provided by the unit’s transformer from various sources. The “R” terminal on the unit’s low voltage terminal board (LVTB) is a logical source. Refer to Fig. 49 and Fig. 51 for wire terminations at J11.
Communication Wiring - Protocols

General —

Protocols are the communication languages spoken by control devices. The main purpose of a protocol is to communicate information in the most efficient method possible. Different protocols exist to provide different kinds of information for different applications. In the BAS application, many different protocols are used, depending on manufacturer. Protocols do not change the function of a controller; just make the front end user different.

The RTU Open can be set to communicate on four different protocols: BACnet, Modbus, N2, and LonWorks. Switch 3 (SW3) on the board is used to set protocol and baud rate. Switches 1 and 2 (SW1 and SW2) are used to set the board’s network address. See Fig. 65 and 66 for protocol switch settings and address switches. The 3rd party connection to the RTU Open is through plug J19. See Fig. 67 for wiring.

**NOTE:** Power must be cycled after changing the SW1-3 switch settings.

Refer to the RTU Open v2 Integration Guide (Catalog No. 11-808-434-01) for more detailed information on protocols, 3rd party wiring, and networking.

<table>
<thead>
<tr>
<th>PROTOCOL</th>
<th>DS8</th>
<th>DS7</th>
<th>DS6</th>
<th>DS5</th>
<th>DS4</th>
<th>DS3</th>
<th>DS2</th>
<th>DS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACnet MS/TP (Master)</td>
<td>Unused</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>Select Baud</td>
<td>Select Baud</td>
</tr>
<tr>
<td>Modbus (Slave)</td>
<td>Unused</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>Select Baud</td>
<td>Select Baud</td>
</tr>
<tr>
<td>N2 (Slave)</td>
<td>Unused</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>LonWorks</td>
<td>Unused</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
</tr>
</tbody>
</table>

**NOTE:**
DS = Dip Switch
BACnet MS/TP SW3 example shown

<table>
<thead>
<tr>
<th>BAUD RATE</th>
<th>DS2</th>
<th>DS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>9600</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>19,200</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>38,400</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>76,800</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>

**Fig. 65 - RTU Open SW3 Dip Switch Settings**

**Fig. 66 - RTU Open Address Switches**

**Fig. 67 - Network Wiring**
Local Access

**BACview® Handheld:** The BACview® is a keypad/display interface used to connect to the RTU Open to access the control information, read sensor values, and test the RTU, see Fig. 68. This is an accessory interface that does not come with the RTU Open controller and can only be used at the unit. Connect the BACview® to the RTU Open J12 local access port. There are two password protected levels in the display (User and Admin). The user password is defaulted to 0000 but can be changed. The Admin password is 1111 and cannot be changed. There is a 10 minute auto logout if a screen is idle. See Form 48-50HCTQ-02T (or later), Appendix A for navigation and screen content.

**Virtual BACview:** Virtual BACview is a freeware computer program that functions as the BACview® Handheld. The USB Link interface (USB-L) is required to connect a computer to the RTU Open board. The link cable connects a USB port to the J12 local access port. This program functions and operates identical to the handheld.

**RTU Open Troubleshooting —**

**Communication LEDs** The LEDs indicate if the controller is speaking to the devices on the network. The LEDs should reflect communication traffic based on the baud rate set. The higher the baud rate the more solid the LEDs will appear. See Table 7.

**NOTE:** Refer to Catalog No. 48-50HCTQ-02T (or later) for complete configuration of RTU Open, operating sequences and troubleshooting information. Refer to RTU Open v2 Integration Guide (Catalog No. 11-808-434-01) for details on configuration and troubleshooting of connected networks. Have a copy of these manuals available at unit start-up.

---

**Fig. 68 - BACview® Handheld Connections**
Table 7 – LEDs

The LEDs on the RTU Open show the status of certain functions

<table>
<thead>
<tr>
<th>If this LED is on...</th>
<th>Status is...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>RTU Open has power</td>
</tr>
<tr>
<td>Rx</td>
<td>RTU Open is receiving data from the network segment</td>
</tr>
<tr>
<td>Tx</td>
<td>RTU Open is transmitting data over the network segment</td>
</tr>
<tr>
<td>DO#</td>
<td>The digital output is active</td>
</tr>
</tbody>
</table>

The Run and Error LEDs indicate control module and network status

<table>
<thead>
<tr>
<th>If Run LED shows...</th>
<th>And Error LED shows...</th>
<th>Status is...</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 flashes per second</td>
<td>Off</td>
<td>Normal</td>
</tr>
<tr>
<td>2 flashes per second</td>
<td>2 flashes, alternating with Run LED</td>
<td>Five minute auto-restart delay after system error</td>
</tr>
<tr>
<td>2 flashes per second</td>
<td>3 flashes, then off</td>
<td>Control module has just been formatted</td>
</tr>
<tr>
<td>2 flashes per second</td>
<td>4 flashes, then pause</td>
<td>Two or more devices on this network have the same ARC156 network address</td>
</tr>
<tr>
<td>2 flashes per second</td>
<td>On</td>
<td>Exec halted after frequent system errors or control programs halted</td>
</tr>
<tr>
<td>5 flashes per second</td>
<td>On</td>
<td>Exec start-up aborted, Boot is running</td>
</tr>
<tr>
<td>5 flashes per second</td>
<td>Off</td>
<td>Firmware transfer in progress, Boot is running</td>
</tr>
<tr>
<td>7 flashes per second</td>
<td>7 flashes per second, alternating with Run LED</td>
<td>Ten second recovery period after brownout</td>
</tr>
<tr>
<td>14 flashes per second</td>
<td>14 flashes per second, alternating with Run LED</td>
<td>Brownout</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>Failure. Try the following solutions:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Turn RTU Open off, then on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Format RTU Open.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Download memory to RTU Open.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Replace RTU Open.</td>
</tr>
</tbody>
</table>

Outdoor Air Enthalpy Control

(PNO 33CSENTHSW)

The enthalpy control (33CSENTHSW) is available as a field-installed accessory to be used with the EconoMiSer®2 damper system. The outdoor air enthalpy sensor is part of the enthalpy control. (The separate field-installed accessory return air enthalpy sensor (33CSENTSEN) is required for differential enthalpy control. See Fig. 69.)

Locate the enthalpy control in the economizer next to the Actuator Motor. Locate two GRA leads in the factory harness and connect the gray lead labeled “ESL” to the terminal labeled “LOW”. See Fig. 69. Connect the enthalpy control power input terminals to economizer actuator power leads RED (connect to 24V) and BLK (connect to GND).

The outdoor enthalpy changeover setpoint is set at the enthalpy controller.

![Fig. 69 - Enthalpy Switch (33CSENTHSW) Connections](C11160)

Differential Enthalpy Control —

Differential enthalpy control is provided by sensing and comparing the outside air and return air enthalpy conditions. Install the outdoor air enthalpy control as described above. Add and install a return air enthalpy sensor.

Return Air Enthalpy Sensor —

Mount the return-air enthalpy sensor (33SENTSEN) in the return-air section of the economizer. The return air sensor is wired to the enthalpy controller (33CSENTHSW). See Fig. 70.

![Fig. 70 - Outside and Return Air Enthalpy Sensor Wiring](C11161)
To wire the return air enthalpy sensor, perform the following:

1. Use a 2-conductor, 18 or 20 AWG, twisted pair cable to connect the return air enthalpy sensor to the enthalpy controller.
2. Connect the field-supplied RED wire to (+) spade connector on the return air enthalpy sensor and the (+) terminal on the enthalpy controller. Connect the BLK wire to (-) spade connector on the return air enthalpy sensor and the (-) terminal on the enthalpy controller.

**Smoke Detectors**

Smoke detectors are available as factory-installed options on 48LC models. Smoke detectors may be specified for Supply Air only or for Return Air without or with economizer or in combination of Supply Air and Return Air. All components necessary for operation are factory-provided and mounted. The unit is factory-configured for immediate smoke detector shutdown operation; additional wiring or modifications to unit terminal board may be necessary to complete the unit and smoke detector configuration to meet project requirements.

Units equipped with factory-optional Return Air smoke detectors require a relocation of the sensor module at unit installation. See Fig. 71 for the as shipped location.

**Completing Installation of Return Air Smoke Sensor:**

1. Unscrew the two screws holding the Return Air Smoke Detector assembly. See Fig. 72, Step 1. Save the screws.
2. Turn the assembly 90° and then rotate end to end. Make sure that the elbow fitting is pointing down. See Fig. 72, Step 2.
3. Screw the sensor and detector plate into its operating position using screws from Step 1. See Fig. 72, Step 3.
4. Connect the flexible tube on the sampling inlet to the sampling tube on the basepan.

---

Fig. 71 - Return Air Smoke Detector, Shipping Position

**Additional Application Data —**

Refer to Catalog No. HKRNKA-1XA for discussions on additional control features of these smoke detectors including multiple unit coordination.
**Table 8 – Unit Wire/Fuse or HACR Breaker Sizing Data**

<table>
<thead>
<tr>
<th>48LC SIZE</th>
<th>IFM TYPE</th>
<th>V-PH−Hz</th>
<th>NO.C.O. or UNPWR.C.O.</th>
<th>w/ PWRD.C.O.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>NO P.E.</td>
<td>w/ P.E. (pwrd fr/ unit)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MCA MAX FUSE or HACR BRKR DISC. SIZE</td>
<td>MCA MAX FUSE or HACR BRKR DISC. SIZE</td>
</tr>
<tr>
<td>DD-STD</td>
<td>24.0</td>
<td>30</td>
<td>24 83</td>
<td>26.0 30 26 85</td>
</tr>
<tr>
<td>MED</td>
<td>24/24</td>
<td>30/30</td>
<td>24/24 102</td>
<td>26/26 30/30 26/26 102</td>
</tr>
<tr>
<td>HIGH</td>
<td>25/25</td>
<td>30/30</td>
<td>25/25 104</td>
<td>27/27 30/30 28/27 106</td>
</tr>
<tr>
<td>DD-STD</td>
<td>12.0</td>
<td>15</td>
<td>12 42</td>
<td>13.0 15 13 43</td>
</tr>
<tr>
<td>MED</td>
<td>11.0</td>
<td>15</td>
<td>12 50</td>
<td>12.0 15 13 51</td>
</tr>
<tr>
<td>HIGH</td>
<td>12.0</td>
<td>15</td>
<td>13 52</td>
<td>13.0 15 14 53</td>
</tr>
<tr>
<td>DD-STD</td>
<td>10.0</td>
<td>15</td>
<td>10 30</td>
<td>12.0 15 12 32</td>
</tr>
<tr>
<td>MED</td>
<td>9.0</td>
<td>15</td>
<td>9 36</td>
<td>11.0 15 12 38</td>
</tr>
<tr>
<td>HIGH</td>
<td>10</td>
<td>15</td>
<td>10 40</td>
<td>12 15 12 42</td>
</tr>
<tr>
<td>DD-STD</td>
<td>28.0</td>
<td>40</td>
<td>29 94</td>
<td>30.0 40 31 96</td>
</tr>
<tr>
<td>MED</td>
<td>27/27</td>
<td>40/40</td>
<td>27/27 110</td>
<td>29/29 40/40 29/29 112</td>
</tr>
<tr>
<td>HIGH</td>
<td>30/29</td>
<td>40/40</td>
<td>30/29 140</td>
<td>32/31 45/40 32/31 142</td>
</tr>
<tr>
<td>DD-STD</td>
<td>13.0</td>
<td>20</td>
<td>14 46</td>
<td>14.0 20 15 47</td>
</tr>
<tr>
<td>MED</td>
<td>12.0</td>
<td>15</td>
<td>12 53</td>
<td>13.0 15 13 54</td>
</tr>
<tr>
<td>HIGH</td>
<td>13.0</td>
<td>15</td>
<td>13 69</td>
<td>14.0 20 14 70</td>
</tr>
<tr>
<td>DD-STD</td>
<td>11.0</td>
<td>15</td>
<td>12 38</td>
<td>13.0 15 14 40</td>
</tr>
<tr>
<td>MED</td>
<td>10.0</td>
<td>15</td>
<td>10 43</td>
<td>12.0 15 12 45</td>
</tr>
<tr>
<td>HIGH</td>
<td>12</td>
<td>15</td>
<td>12 56</td>
<td>14 15 14 58</td>
</tr>
</tbody>
</table>

See “Legend and Notes for Tables 8 and 9” on page 47.
Table 8 – Unit Wire/Fuse or HACR Breaker Sizing Data (cont)

<table>
<thead>
<tr>
<th>48LC SIZE</th>
<th>IFM TYPE</th>
<th>NO C.O. or UNPWR C.O.</th>
<th>w/ PWRD C.O.</th>
<th>NO P.E.</th>
<th>w/ P.E. (p wrd fr/ unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MAX FUSE or HACR BRKR</td>
<td>DISC. SIZE</td>
<td>MCA</td>
<td>MAX FUSE or HACR BRKR</td>
</tr>
<tr>
<td>208/230-3-60</td>
<td>DD-STD</td>
<td>31.0</td>
<td>45</td>
<td>31</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>MED</td>
<td>31/31</td>
<td>45/45</td>
<td>31/30</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>32/32</td>
<td>45/45</td>
<td>33/32</td>
<td>167</td>
</tr>
<tr>
<td>460-3-60</td>
<td>DD-STD</td>
<td>15.0</td>
<td>20</td>
<td>15</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>MED</td>
<td>15.0</td>
<td>20</td>
<td>15</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>15.0</td>
<td>20</td>
<td>15</td>
<td>80</td>
</tr>
<tr>
<td>575-3-60</td>
<td>DD-STD</td>
<td>12.0</td>
<td>15</td>
<td>12</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>MED</td>
<td>12.0</td>
<td>15</td>
<td>12</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>13</td>
<td>15</td>
<td>13</td>
<td>62</td>
</tr>
</tbody>
</table>

See “Legend and Notes for Tables 8 and 9” on page 47.
Table 9 – Unit Wire/Facory Installed HACR Breaker Sizing Data

<table>
<thead>
<tr>
<th>48LC SIZE</th>
<th>IFM TYPE</th>
<th>NO C.O. or UNPWR C.O.</th>
<th>w/ P.E. (pwr fr/unit)</th>
<th>NO P.E.</th>
<th>w/ PWRD C.O.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MCA HACR BRKR DISC. SIZE</td>
</tr>
<tr>
<td>04</td>
<td>DD-STD</td>
<td>24.0 30 24 83</td>
<td>26.0 30 26 85</td>
<td>29.0 40 30 88</td>
<td>31.0 40 32 90</td>
</tr>
<tr>
<td></td>
<td>MED</td>
<td>24/24 30/30 24/24 100</td>
<td>26/26 30/30 26/26 102</td>
<td>29/30 40/40 30/30 105</td>
<td>31/30 40/40 32/30 107</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>25/25 30/30 26/27 104</td>
<td>27/27 30/30 28/27 106</td>
<td>30/30 40/40 31/30 109</td>
<td>32/30 40/40 33/30 111</td>
</tr>
<tr>
<td>05</td>
<td>DD-STD</td>
<td>12.0 15 12 42</td>
<td>13.0 15 13 43</td>
<td>14.0 20 14 52</td>
<td>15 20 15 53</td>
</tr>
<tr>
<td></td>
<td>MED</td>
<td>11.0 15 12 50</td>
<td>12 15 13 51</td>
<td>14.0 20 14 52</td>
<td>15 20 15 53</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>12.0 15 13 52</td>
<td>13 15 14 53</td>
<td>15.0 20 15 54</td>
<td>16 20 16 55</td>
</tr>
<tr>
<td>06</td>
<td>DD-STD</td>
<td>10.0 15 10 30</td>
<td>12.0 15 12 32</td>
<td>11.0 15 12 32</td>
<td>13.0 15 14 34</td>
</tr>
<tr>
<td></td>
<td>MED</td>
<td>9.0 15 9 36</td>
<td>11 15 12 38</td>
<td>11.0 15 11 38</td>
<td>13 15 14 40</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>10 15 10 40</td>
<td>12 15 12 42</td>
<td>12 15 12 42</td>
<td>14 15 14 44</td>
</tr>
<tr>
<td>07</td>
<td>DD-STD</td>
<td>28.0 40 29 94</td>
<td>30.0 40 31 96</td>
<td>33.0 45 34 99</td>
<td>35.0 45 36 101</td>
</tr>
<tr>
<td></td>
<td>MED</td>
<td>27/27 40/40 27/27 110</td>
<td>29/30 40/40 29/30 112</td>
<td>32/32 45/45 32/32 115</td>
<td>34/34 45/45 35/45 117</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>30/30 40/40 30/29 140</td>
<td>32/32 45/45 32/31 142</td>
<td>34/34 45/45 36/35 145</td>
<td>36/36 50/50 38/37 147</td>
</tr>
<tr>
<td>08</td>
<td>DD-STD</td>
<td>13.0 20 14 46</td>
<td>14.0 20 15 47</td>
<td>16.0 20 16 48</td>
<td>17.0 20 17 49</td>
</tr>
<tr>
<td></td>
<td>MED</td>
<td>12.0 15 12 53</td>
<td>13 15 13 54</td>
<td>15.0 20 15 55</td>
<td>16 20 16 56</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>13.0 15 13 69</td>
<td>14 20 14 70</td>
<td>15.0 20 16 71</td>
<td>16 20 17 72</td>
</tr>
<tr>
<td>09</td>
<td>DD-STD</td>
<td>11.0 15 12 38</td>
<td>13.0 15 14 40</td>
<td>13.0 15 13 40</td>
<td>15.0 20 16 42</td>
</tr>
<tr>
<td></td>
<td>MED</td>
<td>10.0 15 10 43</td>
<td>12 15 12 45</td>
<td>12.0 15 12 45</td>
<td>14 15 14 47</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>12 15 12 56</td>
<td>14 15 14 58</td>
<td>13 15 14 58</td>
<td>15 20 16 60</td>
</tr>
</tbody>
</table>

See “Legend and Notes for Tables 8 and 9” on page 47.
## Table 9 – Unit Wire/Factory Installed HACR Breaker Sizing Data (cont)

<table>
<thead>
<tr>
<th>IFM TYPE</th>
<th>MCA</th>
<th>HACR BRKR</th>
<th>DISC. SIZE</th>
<th>MCA</th>
<th>HACR BRKR</th>
<th>DISC. SIZE</th>
<th>MCA</th>
<th>HACR BRKR</th>
<th>DISC. SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD-STD</td>
<td>31.0</td>
<td>45</td>
<td>31</td>
<td>121</td>
<td>33</td>
<td>123</td>
<td>36.0</td>
<td>50</td>
<td>37</td>
</tr>
<tr>
<td>MED</td>
<td>31/31</td>
<td>45/45</td>
<td>31/30</td>
<td>141</td>
<td>33/33</td>
<td>45/45</td>
<td>36/36</td>
<td>50/50</td>
<td>36/36</td>
</tr>
<tr>
<td>HIGH</td>
<td>32/32</td>
<td>45/45</td>
<td>33/32</td>
<td>167</td>
<td>34/34</td>
<td>50/50</td>
<td>37/37</td>
<td>50/50</td>
<td>38/37</td>
</tr>
<tr>
<td>DD-STD</td>
<td>15.0</td>
<td>20</td>
<td>15</td>
<td>57</td>
<td>16.0</td>
<td>20</td>
<td>16</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>MED</td>
<td>15.0</td>
<td>20</td>
<td>15</td>
<td>66</td>
<td>16</td>
<td>20</td>
<td>16</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>HIGH</td>
<td>15.0</td>
<td>20</td>
<td>15</td>
<td>80</td>
<td>16</td>
<td>20</td>
<td>16</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>DD-STD</td>
<td>12.0</td>
<td>15</td>
<td>12</td>
<td>44</td>
<td>14.0</td>
<td>20</td>
<td>14</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>MED</td>
<td>12.0</td>
<td>15</td>
<td>12</td>
<td>53</td>
<td>13</td>
<td>15</td>
<td>14</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>HIGH</td>
<td>13</td>
<td>15</td>
<td>13</td>
<td>62</td>
<td>14</td>
<td>20</td>
<td>15</td>
<td>20</td>
<td>15</td>
</tr>
</tbody>
</table>

See "Legend and Notes for Tables 8 and 9" on page 47.
Legend and Notes for Tables 8 and 9

**LEGEND:**
- **BD** - Belt drive
  - Indoor fan motor
- **BRKR** - Circuit breaker
- **CO** - Convenience outlet
- **DD** - Direct drive
  - Indoor fan motor
- **DISC** - Disconnect
- **FLA** - Full load amps
- **IFM** - Indoor fan motor
- **LRA** - Locked rotor amps
- **MCA** - Minimum circuit amps
- **MOCP** - MAX FUSE or HACR Breaker
- **PE** - Power exhaust
- **PWRD CO** - Powered convenience outlet
- **UNPWR CO** - Unpowered convenience outlet

**NOTES:**
1. In compliance with NEC requirements for multimotor and combination load equipment (refer to NEC Articles 430 and 440), the overcurrent protective device for the unit shall be fuse or HACR breaker. Canadian units may be fuse or circuit breaker.
2. **Unbalanced 3-Phase Supply Voltage**
   Never operate a motor where a phase imbalance in supply voltage is greater than 2%. Use the following formula to determine the percentage of voltage imbalance.

\[
\text{% Voltage Imbalance} = 100 \times \frac{\text{max voltage deviation from average voltage}}{\text{average voltage}}
\]

**Example:** Supply voltage is 230-3-60

<table>
<thead>
<tr>
<th>Phase</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>224 v</td>
</tr>
<tr>
<td>BC</td>
<td>231 v</td>
</tr>
<tr>
<td>AC</td>
<td>226 v</td>
</tr>
</tbody>
</table>

\[
\text{Average Voltage} = \frac{(224 + 231 + 226)}{3} = \frac{681}{3} = 227
\]

Determine maximum deviation from average voltage.
(AB) 227 – 224 = 3 v
(BC) 231 – 227 = 4 v
(AC) 227 – 226 = 1 v
Maximum deviation is 4 v.
Determine percent of voltage imbalance.

\[
\text{% Voltage Imbalance} = 100 \times \frac{4}{227} = 1.76\%
\]

This amount of phase imbalance is satisfactory as it is below the maximum allowable 2%.
**IMPORTANT:** If the supply voltage phase imbalance is more than 2%, contact your local electric utility company immediately.

---

**Step 14 — Adjust Factory-Installed Options**

**Smoke Detectors**

Smoke detector(s) will be connected at the Central Terminal Board (CTB), at terminals marked “Smoke Shutdown”. Remove jumper JMP 3 when ready to energize unit.

**Step 15 — Install Accessories**

Available accessories include:
- Curb
- EconoMi$er® X (with control)
- EconoMi$er2 (without control/for external signal)
- Power Exhaust
- Differential dry-bulb sensor (EconoMi$er2)
- Outdoor enthalpy sensor
- Differential enthalpy sensor
- CO₂ sensor
- Louvered hail guard
- Phase monitor control

Refer to separate installation instructions for information on installing these accessories.

**Pre-Start and Start-Up**

This completes the mechanical installation of the unit. Refer to the unit’s Service Manual for detailed Pre-Start and Start-Up instructions. Download the latest versions from HVAC Partners (www.hvacpartners.com).
APPENDIX —
VFD Operation with Remote Keypad

All 48LC size 04-06 units are equipped with a VFD (Variable Frequency Drive) to automatically adjust the indoor fan motor speed in sequence with the unit’s ventilation, cooling and heating operation. The VFD keypad is included as standard on electro mechanical and RTU Open models. See Fig. 74 for location of the VFD and the VFD keypad in these units.

NOTE: ComfortLink models do not include the VFD keypad as VFD control operation is accessed through the ComfortLink controls.

The VFD keypad is shown in Fig. 73. The function of SOFT KEYS 1 and 2 change depending on what is displayed on the screen. The function of SOFT KEY 1 matches the word in the lower left-hand box on the display screen. The function of SOFT KEY 2 matches the word in the lower right-hand box on the display screen. If the box is empty, then the SOFT KEY does not have a function on that specific screen. The UP and DOWN keys are used to navigate through the menus. The OFF key is used to turn off the VFD. The AUTO key is used to change control of the drive to automatic control. The HAND key is used to change control of the drive to local (hand held) control. The HELP button is used to access the help screens.

For the VFD to operate on the units covered by this document, the drive must be set in AUTO mode. The word “AUTO” will appear in the upper left hand corner of the VFD display. Press the AUTO button to set the drive in AUTO mode.

Use the RJ-45 (CAT5) cable (bundled with the Control Harness - see Fig. 74) to provide easier access for using the VFD Remote Keypad. The cable’s length is long enough to route it through to the unit’s control box, if desired.

To Connect the VFD Keypad using the RJ-45 Cable —

1. Remove the Keypad from the front of the VFD.
2. Remove the RJ-45 adapter from the back of the Remote Keypad and insert the adapter into the RJ-45 port on the front of the VFD.
3. Separate the RJ-45 (CAT5) cable from the Control Harness.
4. Use the CAT5 cable to connect the Remote Keypad to the VFD.
Start Up with Assistant

Initial start-up has been performed at the factory. Use of the start up assistant will override factory VFD configurations. **DO NOT USE THE START-UP ASSISTANT ON THESE LC UNITS!**

Start Up by Changing Parameters Individually

Initial start-up is performed at the factory. To start up the VFD by changing individual parameters, perform the following procedure:

1. Select MENU (SOFT KEY 2). The Main menu will be displayed.
2. Use the UP or DOWN keys to highlight PARAMETERS on the display screen and press ENTER (SOFT KEY 2).
3. Use the UP or DOWN keys to highlight the desired parameter group and press SEL (SOFT KEY 2).
4. Use the UP or DOWN keys to highlight the desired parameter and press EDIT (SOFT KEY 2).
5. Use the UP or DOWN keys to change the value of the parameter.
6. Press SAVE (SOFT KEY 2) to store the modified value. Press CANCEL (SOFT KEY 1) to keep the previous value. Any modifications that are not saved will not be changed.
7. Choose another parameter or press EXIT (SOFT KEY 1) to return to the listing of parameter groups. Continue until all the parameters have been configured and then press EXIT (SOFT KEY 1) to return to the main menu.

**NOTE:** The current parameter value appears above the highlight parameter. To view the default parameter value, press the UP and DOWN keys simultaneously. To restore the default factory settings, select the application macro “HVAC Default.”

VFD Modes

The VFD has several different modes for configuring, operating, and diagnosing the VFD. The modes are:

- Standard Display mode — shows drive status information and operates the drive
- Parameters mode — edits parameter values individually
- Start-up Assistant mode — guides the start up and configuration. **DO NOT USE THE START-UP ASSISTANT ON THESE LC UNITS!**
- Changed Parameters mode — shows all changed parameters
- Drive Parameter Backup mode — stores or uploads the parameters
- Clock Set mode — sets the time and date for the drive
- I/O Settings mode — checks and edits the I/O settings

Standard Display Mode

Use the standard display mode to read information on the drive status and operate the drive. To reach the standard display mode, press EXIT until the LCD display shows status information as described below. (See Fig. 75.)

The top line of the LCD display shows the basic status information of the drive. The HAND icon indicates that the drive control is local from the control panel. The AUTO icon indicates that the drive is in remote control mode, such as the basic I/O or field bus.

The arrow icon indicates the drive and motor rotation status. A rotating arrow (clockwise or counterclockwise) indicates that the drive is running and at set point and the shaft direction is forward or reverse. A rotating blinking arrow indicates that the drive is running but not at set point. A stationary arrow indicates that the drive is stopped. For the units covered in this manual, the correct display rotation is clockwise.

The upper right corner shows the frequency set point that the drive will maintain.

Using parameter group 34, the middle of the LCD display can be configured to display 3 parameter values. The default display shows parameters 0103 (OUTPUT FREQ) in percent speed, 0104 (CURRENT) in amperes, and 0120 (AL1) in voltage DC.

The bottom corners of the LCD display show the functions currently assigned to the two soft keys. The lower middle displays the current time (if configured to show the time).

The first time the drive is powered up, it is in the OFF mode. To switch to local hand-held control and control the drive using the control panel, press and hold the HAND button. Pressing the HAND button switches the drive to hand control while keeping the drive running. Press the AUTO button to switch to remote input control. To start the drive press the HAND or AUTO buttons, to stop the drive press the OFF button.

![Fig. 75 - Standard Display Example](C09249)

To adjust the speed in HAND mode, press the UP or DOWN buttons (the reference changes immediately). The reference can be modified in the local control (HAND) mode, and can be parameterized (using Group 11 reference select) to also allow modification in the remote control mode.
Parameters Mode

The Parameters mode is used to change the parameters on the drive. To change parameters, perform the following procedure. See Table 10 for a listing of the VFD parameters per motor and VFD drive models:

1. Select MENU (SOFT KEY 2). The Main menu will be displayed.
2. Use the UP or DOWN keys to highlight PARAMETERS on the display screen and press ENTER (SOFT KEY 2).
3. Use the UP or DOWN keys to highlight the desired parameter group and press SEL (SOFT KEY 2).
4. Use the UP or DOWN keys to highlight the desired parameter and press EDIT (SOFT KEY 2).
5. Use the UP or DOWN keys to change the value of the parameter.
6. Press SAVE (SOFT KEY 2) to store the modified value. Press CANCEL (SOFT KEY 1) to keep the previous value. Any modifications that are not saved will not be changed.
7. Choose another parameter or press EXIT (SOFT KEY 1) to return to the listing of parameter groups. Continue until all the parameters have been configured and then press EXIT (SOFT KEY 1) to return to the main menu.

NOTE: The current parameter value appears above the highlight parameter. To view the default parameter value, press the UP and DOWN keys simultaneously. To restore the default factory settings, select the Carrier application macro.

Changed Parameters Mode

The Changed Parameters mode is used to view and edit recently changed parameters on the drive. To view the changed parameters, perform the following procedure:

1. Select MENU (SOFT KEY 2). The Main menu will be displayed.
2. Use the UP or DOWN keys to highlight CHANGED PAR on the display screen and press ENTER (SOFT KEY 2). A list of the recently changed parameters will be displayed.
3. Use the UP or DOWN keys to highlight the desired parameter group and press EDIT (SOFT KEY 2) to change the parameter if desired.
4. Press EXIT (SOFT KEY 1) to exit the Changed Parameters mode.

Drive Parameter Backup Mode

The drive parameter back up mode is used to export the parameters from one drive to another. The parameters can be uploaded from a VFD to the removable control panel. The control panel can then be transferred to another drive and the parameters downloaded into memory.

Depending on the motor and application, there are two options available. The first option is to download all parameters. This copies both application and motor parameters to the drive from the control panel. This is recommended when using the same application for drives of the same size. This can also be used to create a backup of the parameters group for the drive.

The second option downloads only the application parameters to the drive. This is recommended when using the same application for drives of different sizes.

Upload All Parameters —

To upload and store parameters in the control panel from the VFD, perform the following procedure:

1. Select MENU (SOFT KEY 2). The Main menu will be displayed.
2. Use the UP or DOWN keys to highlight PAR BACKUP on the display screen and press ENTER (SOFT KEY 2).
3. Use the UP or DOWN keys to highlight UPLOAD TO PANEL and press SEL (SOFT KEY 2).
4. The text “Copying Parameters” will be displayed with a progress indicator. To stop the process, select ABORT (SOFT KEY 1).
5. When the upload is complete, the text “Parameter upload successful” will be displayed.
6. The display will then return to the PAR BACKUP menu. Select EXIT (SOFT KEY 1) to return to the main menu.
7. The control panel can now be disconnected from the drive.

Download All Parameters —

To download all parameters from the control panel to the VFD, perform the following procedure:

1. Install the control panel with the correct parameters onto the VFD.
2. Select MENU (SOFT KEY 2). The Main menu will be displayed.
3. Use the UP or DOWN keys to highlight PAR BACKUP on the display screen and press ENTER (SOFT KEY 2).
4. Use the UP or DOWN keys to highlight DOWNLOAD TO DRIVE ALL and press SEL (SOFT KEY 2).
5. The text “Restoring Parameters” will be displayed with a progress indicator. To stop the process, select ABORT (SOFT KEY 1).
6. When the download is complete, the text “Parameter download successful” will be displayed.
7. The display will then return to the PAR BACKUP menu. Select EXIT (SOFT KEY 1) to return to the main menu.
8. The control panel can now be disconnected from the drive.
Download Application Parameters —

To download application parameters only to the control panel from the VFD, perform the following procedure:

1. Install the control panel with the correct parameters onto the VFD.
2. Select MENU (SOFT KEY 2). The Main menu will be displayed.
3. Use the UP or DOWN keys to highlight PAR BACKUP on the display screen and press ENTER (SOFT KEY 2).
4. Use the UP or DOWN keys to highlight DOWNLOAD APPLICATION and press SEL (SOFT KEY 2).
5. The text “Downloading Parameters (partial)” will be displayed with a progress indicator. To stop the process, select ABORT (SOFT KEY 1).
6. When the download is complete, the text “Parameter download successful” will be displayed.
7. The display will then return to the PAR BACKUP menu. Select EXIT (SOFT KEY 1) to return to the main menu.
8. The control panel can now be disconnected from the drive.

Clock Set Mode

The clock set mode is used for setting the date and time for the internal clock of the VFD. In order to use the timer functions of the VFD control, the internal clock must be set. The date is used to determine weekdays and is visible in the fault logs.

To set the clock, perform the following procedure:

1. Select MENU (SOFT KEY 2). The Main menu will be displayed.
2. Use the UP or DOWN keys to highlight CLOCK SET on the display screen and press ENTER (SOFT KEY 2). The clock set parameter list will be displayed.
3. Use the UP or DOWN keys to highlight CLOCK VISIBILITY and press SEL (SOFT KEY 2). This parameter is used to display or hide the clock on the screen. Use the UP or DOWN keys to change the parameter setting. Press OK (SOFT KEY 2) to save the configuration and return to the Clock Set menu.
4. Use the UP or DOWN keys to highlight SET TIME and press SEL (SOFT KEY 2). Use the UP or DOWN keys to change the hours and minutes. Press OK (SOFT KEY 2) to save the configuration and return to the Clock Set menu.
5. Use the UP or DOWN keys to highlight TIME FORMAT and press SEL (SOFT KEY 2). Use the UP or DOWN keys to change the parameter setting. Press OK (SOFT KEY 2) to save the configuration and return to the Clock Set menu.
6. Use the UP or DOWN keys to highlight SET DATE and press SEL (SOFT KEY 2). Use the UP or DOWN keys to change the day, month, and year. Press OK (SOFT KEY 2) to save the configuration and return to the Clock Set menu.
7. Use the UP or DOWN keys to highlight DATE FORMAT and press SEL (SOFT KEY 2). Use the UP or DOWN keys to change the parameter setting. Press OK (SOFT KEY 2) to save the configuration and return to the Clock Set menu.
8. Press EXIT (SOFT KEY 1) twice to return to the main menu.

I/O Settings Mode

The I/O Settings mode is used for viewing and editing the I/O settings.

To configure the I/O settings, perform the following procedure:

1. Select MENU (SOFT KEY 2). The Main menu will be displayed.
2. Use the UP or DOWN keys to highlight I/O SETTINGS on the display screen and press ENTER (SOFT KEY 2). The I/O Settings parameter list will be displayed.
3. Use the UP or DOWN keys to highlight the desired I/O setting and press SEL (SOFT KEY 2).
4. Use the UP or DOWN keys to select the parameter to view. Press OK (SOFT KEY 2).
5. Use the UP or DOWN keys to change the parameter setting. Press SAVE (SOFT KEY 2) to save the configuration. Press CANCEL (SOFT KEY 1) to keep the previous value. Any modifications that are not saved will not be changed.
6. Press EXIT (SOFT KEY 1) twice to return to the main menu.
<table>
<thead>
<tr>
<th>Parameter Group</th>
<th>Parameter Number</th>
<th>48LC 04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Description</td>
<td>1.7 HP 575V</td>
<td>1.7 HP 208–230V</td>
<td>1.7 HP 460V</td>
<td>2.4 HP 575V</td>
<td>2.4 HP 208–230V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drive/Motor Voltage</td>
<td>575V</td>
<td>208–230V</td>
<td>460V</td>
<td>575V</td>
<td>208–230V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Part Number</td>
<td>HD56FR579</td>
<td>HD56FR233</td>
<td>HD56FR463</td>
<td>HD56FE577</td>
<td>HD56FE593</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VFD Part Number</td>
<td>HK30WA048</td>
<td>HK30WA046</td>
<td>HK30WA046</td>
<td>HK30WA048</td>
<td>HK30WA001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start-Up Data</td>
<td>Application Macro</td>
<td>(1) HVAC DEFAULT</td>
<td>(1) HVAC DEFAULT</td>
<td>(1) HVAC DEFAULT</td>
<td>(1) HVAC DEFAULT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9905 Motor Nominal Voltage</td>
<td>575</td>
<td>230</td>
<td>460</td>
<td>575</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9906 Motor Nominal Current</td>
<td>3.1</td>
<td>5.8</td>
<td>2.9</td>
<td>3.4</td>
<td>7.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9907 Motor Nominal Frequency</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9908 Motor Nominal Speed</td>
<td>1725</td>
<td>1725</td>
<td>1725</td>
<td>1725</td>
<td>1725</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9909 Motor Nominal Power</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>2.4</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start/Stop/DIR</td>
<td>EXT1 Commands</td>
<td>(1) DI1</td>
<td>(1) DI1</td>
<td>(1) DI1</td>
<td>(1) DI1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1003 Direction</td>
<td>(1) Forward</td>
<td>(1) Forward</td>
<td>(1) Forward</td>
<td>(1) Forward</td>
<td>(1) Forward</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1103 REF1 Select</td>
<td>(1) AI1</td>
<td>(1) AI1</td>
<td>(1) AI1</td>
<td>(1) AI1</td>
<td>(1) AI1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1104 REF1 Minimum</td>
<td>0 Hz</td>
<td>0 Hz</td>
<td>0 Hz</td>
<td>0 Hz</td>
<td>0 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1105 REF1 Maximum</td>
<td>60 Hz</td>
<td>60 Hz</td>
<td>60 Hz</td>
<td>60 Hz</td>
<td>60 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant Speeds</td>
<td>Constant Speed Select</td>
<td>(8) DI2,3</td>
<td>(8) DI2,3</td>
<td>(8) DI2,3</td>
<td>(8) DI2,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1201 Constant Speed 1</td>
<td>52.4</td>
<td>52.4</td>
<td>52.4</td>
<td>52.4</td>
<td>52.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1202 Constant Speed 2</td>
<td>60Hz</td>
<td>60Hz</td>
<td>60Hz</td>
<td>60Hz</td>
<td>60Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1203 Constant Speed 3</td>
<td>60Hz</td>
<td>60Hz</td>
<td>60Hz</td>
<td>60Hz</td>
<td>60Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Inputs</td>
<td>Minimum AI–1</td>
<td>20.00%</td>
<td>20.00%</td>
<td>20.00%</td>
<td>20.00%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1301 Maximum AI–1</td>
<td>100.00%</td>
<td>100.00%</td>
<td>100.00%</td>
<td>100.00%</td>
<td>100.00%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1302 Constant Speed 1</td>
<td>52.4</td>
<td>52.4</td>
<td>52.4</td>
<td>52.4</td>
<td>52.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1401 Relay Output 1</td>
<td>(1) Ready</td>
<td>(1) Ready</td>
<td>(1) Ready</td>
<td>(1) Ready</td>
<td>(1) Ready</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1402 Relay Output 2</td>
<td>(2) Run</td>
<td>(2) Run</td>
<td>(2) Run</td>
<td>(2) Run</td>
<td>(2) Run</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1403 Relay Output 3</td>
<td>(16) FLT/ALARM</td>
<td>(16) FLT/ALARM</td>
<td>(16) FLT/ALARM</td>
<td>(16) FLT/ALARM</td>
<td>(16) FLT/ALARM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Control</td>
<td>Fault Reset Sel</td>
<td>(0) Keypad</td>
<td>(0) Keypad</td>
<td>(0) Keypad</td>
<td>(0) Keypad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1604 Start Enable 1</td>
<td>(4) DI4</td>
<td>(4) DI4</td>
<td>(4) DI4</td>
<td>(4) DI4</td>
<td>(4) DI4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1605 Override</td>
<td>(0) NOT SEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limits</td>
<td>Minimum Frequency</td>
<td>0.0 Hz</td>
<td>0.0 Hz</td>
<td>0.0 Hz</td>
<td>0.0 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003 Maximum Current</td>
<td>3.6</td>
<td>6.7</td>
<td>3.3</td>
<td>3.9</td>
<td>9.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007 Maximum Frequency</td>
<td>60Hz</td>
<td>60Hz</td>
<td>60Hz</td>
<td>60Hz</td>
<td>60Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor</td>
<td>Start Function</td>
<td>(1) AUTO</td>
<td>(1) AUTO</td>
<td>(1) AUTO</td>
<td>(1) AUTO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2101 Stop Function</td>
<td>(1) Coast</td>
<td>(1) Coast</td>
<td>(1) Coast</td>
<td>(1) Coast</td>
<td>(1) Coast</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2102 Acc/Dec 1/2 Sel</td>
<td>(0) NOT SEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2201 Accelerate Time</td>
<td>30.0s</td>
<td>30.0s</td>
<td>30.0s</td>
<td>30.0s</td>
<td>30.0s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2202 Decelerate Time</td>
<td>10.0s</td>
<td>10.0s</td>
<td>10.0s</td>
<td>10.0s</td>
<td>10.0s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor</td>
<td>Switching Frequency</td>
<td>4 kHz</td>
<td>4 kHz</td>
<td>4 kHz</td>
<td>4 kHz</td>
<td>4 kHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2606 Switching Frequency Control</td>
<td>(1) ON</td>
<td>(1) ON</td>
<td>(1) ON</td>
<td>(1) ON</td>
<td>(1) ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2607 Motor Therm Prot</td>
<td>(1) Fault</td>
<td>(1) Fault</td>
<td>(1) Fault</td>
<td>(1) Fault</td>
<td>(1) Fault</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3005 Motor Thermal Time</td>
<td>1050s</td>
<td>1050s</td>
<td>1050s</td>
<td>1050s</td>
<td>1050s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3006 Motor Load Curve</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3007 Zero Speed Load</td>
<td>%00705</td>
<td>%00705</td>
<td>%00705</td>
<td>%00705</td>
<td>%00705</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3008 Break Point Frequency</td>
<td>35 Hz</td>
<td>35 Hz</td>
<td>35 Hz</td>
<td>35 Hz</td>
<td>35 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3009 AR Overcurrent</td>
<td>(0) DISABLE</td>
<td>(0) DISABLE</td>
<td>(0) DISABLE</td>
<td>(0) DISABLE</td>
<td>(0) DISABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3104 AR Overvoltage</td>
<td>(1) ENABLE</td>
<td>(1) ENABLE</td>
<td>(1) ENABLE</td>
<td>(1) ENABLE</td>
<td>(1) ENABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3105 AR Undervoltage</td>
<td>(1) ENABLE</td>
<td>(1) ENABLE</td>
<td>(1) ENABLE</td>
<td>(1) ENABLE</td>
<td>(1) ENABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3106 EFB Protocol</td>
<td>EFB PROTOCOL ID</td>
<td>0601 (hex)</td>
<td>0601 (hex)</td>
<td>0601 (hex)</td>
<td>0601 (hex)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5301 EFB Baud Rate</td>
<td>38400</td>
<td>38400</td>
<td>38400</td>
<td>38400</td>
<td>38400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5303 EFB PARITY</td>
<td>8 NONE 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5304 EFB CTRL PROFILE</td>
<td>DCU PROFILE</td>
<td>DCU PROFILE</td>
<td>DCU PROFILE</td>
<td>DCU PROFILE</td>
<td>DCU PROFILE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5305 COMM PROT SEL</td>
<td>6 (LEN)</td>
<td>6 (LEN)</td>
<td>6 (LEN)</td>
<td>6 (LEN)</td>
<td>6 (LEN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter Group</td>
<td>Parameter Number</td>
<td>48LC 04</td>
<td>48LC 05</td>
<td>48LC 06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Start-Up Data</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application Macro</td>
<td>9902</td>
<td>(1) HVAC DEFAULT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Nominal Voltage</td>
<td>9905</td>
<td>460</td>
<td>575</td>
<td>230</td>
<td>460</td>
<td>575</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Nominal Current</td>
<td>9906</td>
<td>4.0</td>
<td>3.1</td>
<td>5.8</td>
<td>2.9</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Nominal Speed</td>
<td>9907</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Nominal Power</td>
<td>9908</td>
<td>1725</td>
<td>1725</td>
<td>1725</td>
<td>1725</td>
<td>1725</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Start/Stop/Dir</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXT1 Commands</td>
<td>1001</td>
<td>(1) DI1</td>
<td>(1) DI1</td>
<td>(1) DI1</td>
<td>(1) DI1</td>
<td>(1) DI1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direction</td>
<td>1003</td>
<td>(1) Forward</td>
<td>(1) Forward</td>
<td>(1) Forward</td>
<td>(1) Forward</td>
<td>(1) Forward</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REF1 Select</td>
<td>1103</td>
<td>(1) All</td>
<td>(1) All</td>
<td>(1) All</td>
<td>(1) All</td>
<td>(1) All</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REF1 Minimum</td>
<td>1104</td>
<td>0 Hz</td>
<td>0 Hz</td>
<td>0 Hz</td>
<td>0 Hz</td>
<td>0 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REF1 Maximum</td>
<td>1105</td>
<td>60 Hz</td>
<td>60 Hz</td>
<td>60 Hz</td>
<td>60 Hz</td>
<td>60 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Constant Speeds</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant Speed Select</td>
<td>1201</td>
<td>(8) Di2,3</td>
<td>(8) Di2,3</td>
<td>(8) Di2,3</td>
<td>(8) Di2,3</td>
<td>(8) Di2,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant Speed 1</td>
<td>1202</td>
<td>52.4</td>
<td>42.6</td>
<td>42.6</td>
<td>42.6</td>
<td>42.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant Speed 2</td>
<td>1203</td>
<td>60 Hz</td>
<td>60 Hz</td>
<td>60 Hz</td>
<td>60 Hz</td>
<td>60 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant Speed 3</td>
<td>1204</td>
<td>60 Hz</td>
<td>60 Hz</td>
<td>60 Hz</td>
<td>60 Hz</td>
<td>60 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Analog Inputs</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum AI-1</td>
<td>1301</td>
<td>20.00%</td>
<td>20.00%</td>
<td>20.00%</td>
<td>20.00%</td>
<td>20.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum AI-1</td>
<td>1302</td>
<td>100.00%</td>
<td>100.00%</td>
<td>100.00%</td>
<td>100.00%</td>
<td>100.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Relay Outputs</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay Output 1</td>
<td>1401</td>
<td>(1) Ready</td>
<td>(1) Ready</td>
<td>(1) Ready</td>
<td>(1) Ready</td>
<td>(1) Ready</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay Output 2</td>
<td>1402</td>
<td>(2) Run</td>
<td>(2) Run</td>
<td>(2) Run</td>
<td>(2) Run</td>
<td>(2) Run</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay Output 3</td>
<td>1403</td>
<td>(16) FLT/ALARM</td>
<td>(16) FLT/ALARM</td>
<td>(16) FLT/ALARM</td>
<td>(16) FLT/ALARM</td>
<td>(16) FLT/ALARM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault Reset Sel</td>
<td>1604</td>
<td>(0) Keypad</td>
<td>(0) Keypad</td>
<td>(0) Keypad</td>
<td>(0) Keypad</td>
<td>(0) Keypad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start Enable 1</td>
<td>1608</td>
<td>(4) DI4</td>
<td>(4) DI4</td>
<td>(4) DI4</td>
<td>(4) DI4</td>
<td>(4) DI4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Override</strong></td>
<td>1701</td>
<td>(0) NOT SEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Limits</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Current</td>
<td>2003</td>
<td>4.6</td>
<td>3.6</td>
<td>6.7</td>
<td>3.3</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Frequency</td>
<td>2007</td>
<td>0.0 Hz</td>
<td>0.0 Hz</td>
<td>0.0 Hz</td>
<td>0.0 Hz</td>
<td>0.0 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Frequency</td>
<td>2008</td>
<td>60 Hz</td>
<td>60 Hz</td>
<td>60 Hz</td>
<td>60 Hz</td>
<td>60 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Start/Stop</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start Function</td>
<td>2101</td>
<td>(1) AUTO</td>
<td>(1) AUTO</td>
<td>(1) AUTO</td>
<td>(1) AUTO</td>
<td>(1) AUTO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stop Function</td>
<td>2102</td>
<td>(1) Coast</td>
<td>(1) Coast</td>
<td>(1) Coast</td>
<td>(1) Coast</td>
<td>(1) Coast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMB STOP Sel</td>
<td>2109</td>
<td>(0) NOT SEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Accel/Decel</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc/Dec 1/2 Sel</td>
<td>2201</td>
<td>(0) NOT SEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accelerate Time</td>
<td>2202</td>
<td>30.0s</td>
<td>30.0s</td>
<td>30.0s</td>
<td>30.0s</td>
<td>30.0s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decelerate Time</td>
<td>2203</td>
<td>10.0s</td>
<td>10.0s</td>
<td>10.0s</td>
<td>10.0s</td>
<td>10.0s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Motor</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>2606</td>
<td>4 kHz</td>
<td>4 kHz</td>
<td>4 kHz</td>
<td>4 kHz</td>
<td>4 kHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching Frequency Control</td>
<td>2607</td>
<td>(1) ON</td>
<td>(1) ON</td>
<td>(1) ON</td>
<td>(1) ON</td>
<td>(1) ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Fault Functions</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Therm Prot</td>
<td>3005</td>
<td>(1) Fault</td>
<td>(1) Fault</td>
<td>(1) Fault</td>
<td>(1) Fault</td>
<td>(1) Fault</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Thermal Time</td>
<td>3006</td>
<td>1050s</td>
<td>1050s</td>
<td>1050s</td>
<td>1050s</td>
<td>1050s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Load Curve</td>
<td>3007</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero Speed Load</td>
<td>3008</td>
<td>%0.0705</td>
<td>%0.0705</td>
<td>%0.0705</td>
<td>%0.0705</td>
<td>%0.0705</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Break Point Frequency</td>
<td>3009</td>
<td>35 Hz</td>
<td>35 Hz</td>
<td>35 Hz</td>
<td>35 Hz</td>
<td>35 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Automatic Reset</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR Overcurrent</td>
<td>3104</td>
<td>(0) DISABLE</td>
<td>(0) DISABLE</td>
<td>(0) DISABLE</td>
<td>(0) DISABLE</td>
<td>(0) DISABLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR Overvoltage</td>
<td>3105</td>
<td>(1) ENABLE</td>
<td>(1) ENABLE</td>
<td>(1) ENABLE</td>
<td>(1) ENABLE</td>
<td>(1) ENABLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR Undervoltage</td>
<td>3106</td>
<td>(1) ENABLE</td>
<td>(1) ENABLE</td>
<td>(1) ENABLE</td>
<td>(1) ENABLE</td>
<td>(1) ENABLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>EFB Protocol</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFB PROTOCOL ID</td>
<td>5301</td>
<td>0601 (hex)</td>
<td>0601 (hex)</td>
<td>0601 (hex)</td>
<td>0601 (hex)</td>
<td>0601 (hex)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFB STATION ID</td>
<td>5302</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFB BAUD RATE</td>
<td>5303</td>
<td>38400</td>
<td>38400</td>
<td>38400</td>
<td>38400</td>
<td>38400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFB PARITY</td>
<td>5304</td>
<td>8 NONE 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFB CTRL PROFILE</td>
<td>5305</td>
<td>DCU PROFILE</td>
<td>DCU PROFILE</td>
<td>DCU PROFILE</td>
<td>DCU PROFILE</td>
<td>DCU PROFILE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Options</strong></td>
<td>9802</td>
<td>6 (LEN)</td>
<td>6 (LEN)</td>
<td>6 (LEN)</td>
<td>6 (LEN)</td>
<td>6 (LEN)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter Group</td>
<td>Parameter Number</td>
<td>48LC 06</td>
<td>48LC 05/06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
<td>---------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Motor</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Description</td>
<td>5002</td>
<td>2.4 HP 208–230V</td>
<td>2.4 HP 460V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drive/Motor Voltage</td>
<td>5003</td>
<td>2.9 HP 208–230V</td>
<td>2.9 HP 460V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Part Number</td>
<td>5004</td>
<td>3.7 HP 575V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VFD Part Number</td>
<td>5005</td>
<td>HK30WA001</td>
<td>HK30WA001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABB Part Number</td>
<td>5006</td>
<td>ACH550–CARUH =012A–1</td>
<td>ACH550–CARUH =06A9=4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Start/Up Data</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Nominal Voltage</td>
<td>5007</td>
<td>230</td>
<td>460</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Nominal Current</td>
<td>5008</td>
<td>9.2</td>
<td>4.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Nominal Frequency</td>
<td>5009</td>
<td>60</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Nominal Speed</td>
<td>5010</td>
<td>1050s</td>
<td>1050s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Reference Select</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXT1 Commands</td>
<td>5011</td>
<td>(1) Soft Start</td>
<td>(1) Soft Start</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direction</td>
<td>5012</td>
<td>(1) Forward</td>
<td>(1) Forward</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REF1 Select</td>
<td>5013</td>
<td>(1) Auto</td>
<td>(1) Auto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REF1 Minimum</td>
<td>5014</td>
<td>0 Hz</td>
<td>0 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REF1 Maximum</td>
<td>5015</td>
<td>60 Hz</td>
<td>60 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Constant Speeds</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant Speed 1</td>
<td>5016</td>
<td>42.6</td>
<td>41.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant Speed 2</td>
<td>5017</td>
<td>60 Hz</td>
<td>60 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant Speed 3</td>
<td>5018</td>
<td>60 Hz</td>
<td>60 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Analog Inputs</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Al–1</td>
<td>5019</td>
<td>20.00%</td>
<td>20.00%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Al–1</td>
<td>5020</td>
<td>100.00%</td>
<td>100.00%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Relay Outputs</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay Output 1</td>
<td>5021</td>
<td>(1) Ready</td>
<td>(1) Ready</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay Output 2</td>
<td>5022</td>
<td>(2) Run</td>
<td>(2) Run</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay Output 3</td>
<td>5023</td>
<td>(16) FLT/ALARM (16) FLT/ALARM (16) FLT/ALARM (16) FLT/ALARM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>System Control</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault Reset Sel</td>
<td>5024</td>
<td>(0) Keypad</td>
<td>(0) Keypad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start Enable 1</td>
<td>5025</td>
<td>(4) DI4</td>
<td>(4) DI4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Override</strong></td>
<td>5026</td>
<td>(6) NOT SEL</td>
<td>(6) NOT SEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Limits</strong></td>
<td>5027</td>
<td>0.0 Hz</td>
<td>0.0 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Current</td>
<td>5028</td>
<td>10.6</td>
<td>5.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Start/Stop</strong></td>
<td>5029</td>
<td>4.6</td>
<td>4.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start Function</td>
<td>5030</td>
<td>1 AUTO</td>
<td>1 AUTO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stop Function</td>
<td>5031</td>
<td>1 AUTO</td>
<td>1 AUTO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM STOP Sel</td>
<td>5032</td>
<td>(0) NOT SEL</td>
<td>(0) NOT SEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Accel/Decel</strong></td>
<td>5033</td>
<td>30.0s</td>
<td>30.0s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accelerate Time</td>
<td>5034</td>
<td>10.0s</td>
<td>10.0s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decelerate Time</td>
<td>5035</td>
<td>10.0s</td>
<td>10.0s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Motor</strong></td>
<td>5036</td>
<td>4 kHz</td>
<td>4 kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>5037</td>
<td>4 kHz</td>
<td>4 kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Fault Functions</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Therm Prot</td>
<td>5038</td>
<td>1 Fault</td>
<td>1 Fault</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Thermal Time</td>
<td>5039</td>
<td>1050s</td>
<td>1050s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Load Curve</td>
<td>5040</td>
<td>100%</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero Speed Load</td>
<td>5041</td>
<td>%00705</td>
<td>%00705</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Break Point Frequency</td>
<td>5042</td>
<td>35 Hz</td>
<td>35 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Automatic Reset</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR Overcurrent</td>
<td>5043</td>
<td>(0) DISABLE</td>
<td>(0) DISABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR Overvoltage</td>
<td>5044</td>
<td>(1) ENABLE</td>
<td>(1) ENABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR Undervoltage</td>
<td>5045</td>
<td>(1) ENABLE</td>
<td>(1) ENABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>EFB Protocol</strong></td>
<td>5046</td>
<td>0601 (hex)</td>
<td>0601 (hex)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Options</strong></td>
<td>5047</td>
<td>6 (LEN)</td>
<td>6 (LEN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 10 - 48LC 04–06 VFD Parameters (cont.)
VFD Diagnostics

The drive detects error situations and reports them using:
1. Green and red LEDs on the body of the drive (located under the keypad)
2. Status LED on the control panel
3. Control panel display
4. The Fault Word and Alarm Word parameter bits (parameters 0305 to 0309)

The form of the display depends on the severity of the error. The user can specify the severity for many errors by directing the drive to ignore the error situation, report the situation as an alarm, or report the situation as a fault.

Faults (Red LED Lit)

The VFD signals that it has detected a severe error, or fault, by:
1. Enabling the red LED on the drive (LED is either steady or flashing)
2. Setting an appropriate bit in a Fault Word parameter (0305 to 0307)
3. Overriding the control panel display with the display of a fault code
4. Stopping the motor (if it was on)
5. Sets an appropriate bit in Fault Word parameter 0305-0307.

The fault code on the control panel display is temporary. Pressing the MENU, ENTER, UP button or DOWN buttons removes the fault message. The message reappears after a few seconds if the control panel is not touched and the fault is still active.

Alarms (Green LED Flashing)

For less severe errors, called alarms, the diagnostic display is advisory. For these situations, the drive is simply reporting that it had detected something unusual. In these situations, the drive:
1. Flashs the green LED on the drive (does not apply to alarms that arise from control panel operation errors)
2. Sets an appropriate bit in an Alarm Word parameter (0308 or 0309)
3. Overrides the control panel display with the display of an alarm code and/or name

Alarm messages disappear from the control panel display after a few seconds. The message returns periodically as long as the alarm condition exists.

Correcting Faults

The recommended corrective action for faults is shown in the Fault Listing Table 11. The VFD can also be reset to remove the fault. If an external source for a start command is selected and is active, the VFD may start immediately after fault reset.

To reset a fault indicated by a flashing red LED, turn off the power for 5 minutes. To reset a fault indicated by a red LED (not flashing), press RESET from the control panel or turn off the power for 5 minutes. Depending on the value of parameter 1604 (FAULT RESET SELECT), digital input or serial communication could also be used to reset the drive. When the fault has been corrected, the motor can be started.

History

For reference, the last three fault codes are stored into parameters 0401, 0412, 0413. For the most recent fault (identified by parameter 0401), the drive stores additional data (in parameters 0402 through 0411) to aid in troubleshooting a problem. For example, a parameter 0404 stores the motor speed at the time of the fault. To clear the fault history (all of Group 04, Fault History parameters), follow these steps:
1. In the control panel, Parameters mode, select parameter 0401.
2. Press EDIT.
3. Press the UP and DOWN buttons simultaneously.
4. Press SAVE.

Correcting Alarms

To correct alarms, first determine if the Alarm requires any corrective action (action is not always required). Use Table 12 to find and address the root cause of the problem.

If diagnostics troubleshooting has determined that the drive is defective during the warranty period, contact ABB Automation Inc., at 1-800-435-7365, option 4, option 3. A qualified technician will review the problem with the caller and make a determination regarding how to proceed. This may involve dispatching a designated service station (DSS) representative from an authorized station, dispatching a replacement unit, or advising return for repair.

Control Panel Cleaning

Use a soft damp cloth to clean the control panel. Avoid harsh cleaners which could scratch the display window.

Battery Replacement

A battery is only used in assistant control panels that have the clock function available and enabled. The battery keeps the clock operating in memory during power interruptions. The expected life for the battery is greater than ten years. To remove the battery, use a coin to rotate the battery holder on the back of the control panel. Replace the battery with type CR2032.
<table>
<thead>
<tr>
<th>FAULT CODE</th>
<th>FAULT NAME IN PANEL</th>
<th>DESCRIPTION AND RECOMMENDED CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OVERCURRENT</td>
<td>Output current is excessive. Check for excessive motor load, insufficient acceleration time (parameters 2202 ACCELER TIME 1, default 30 seconds), or faulty motor, motor cables or connections.</td>
</tr>
<tr>
<td>2</td>
<td>DC OVERVOLT</td>
<td>Intermediate circuit DC voltage is excessive. Check for static or transient over voltages in the input power supply, insufficient deceleration time (parameters 2203 DECELER TIME 1, default 30 seconds), or undersized brake chopper (if present).</td>
</tr>
<tr>
<td>3</td>
<td>DEV OVERTEMP</td>
<td>Drive heat sink is overheated. Temperature is at or above 115°C (239°F). Check for fan failure, obstructions in the air flow, dirt or dust coating on the heat sink, excessive ambient temperature, or excessive motor load.</td>
</tr>
<tr>
<td>4</td>
<td>SHORT CIRC</td>
<td>Fault current. Check for short—circuit in the motor cable(s) or motor or supply disturbances.</td>
</tr>
<tr>
<td>5</td>
<td>OVERLOAD</td>
<td>Inverter overload condition. The drive output current exceeds the ratings.</td>
</tr>
<tr>
<td>6</td>
<td>DC OVERVOLT</td>
<td>Intermediate circuit DC voltage is not sufficient. Check for missing phase in the input power supply, blown fuse, or under voltage on main circuit.</td>
</tr>
<tr>
<td>7</td>
<td>A1 LOSS</td>
<td>Analog input 1 loss. Analog input value is less than A1 FLT LIMIT (3021). Check source and connection for analog input and parameter settings for A1 FLT LIMIT (3021) and 3001 Al&lt;MIN FUNCTION.</td>
</tr>
<tr>
<td>8</td>
<td>A2 LOSS</td>
<td>Analog input 2 loss. Analog input value is less than A2 FLT LIMIT (3022). Check source and connection for analog input and parameter settings for A2 FLT LIMIT (3022) and 3001 Al&lt;MIN FUNCTION.</td>
</tr>
<tr>
<td>9</td>
<td>MOT OVERTEMP</td>
<td>Motor is too hot, as estimated by the drive. Check for overloaded motor. Adjust the parameters used for the estimate (3005 through 3009). Check the temperature sensors and Group 35 parameters.</td>
</tr>
<tr>
<td>10</td>
<td>PANEL LOSS</td>
<td>Panel communication is lost and either drive is in local control mode (the control panel displays LOC), or drive is in remote control mode (REM) and is parameterized to accept start/stop, direction or reference from the control panel. To correct check the communication lines and connections. Check parameter 3002 PANEL COMM ERROR, parameters in Group 10: Command Inputs and Group 11:Reference Select (if drive operation is REM).</td>
</tr>
<tr>
<td>11</td>
<td>ID RUN FAIL</td>
<td>The motor ID run was not completed successfully. Check motor connections.</td>
</tr>
<tr>
<td>12</td>
<td>MOTOR STALL</td>
<td>Motor or process stall. Motor is operating in the stall region. Check for excessive load or insufficient motor power. Check parameters 3010 through 3012.</td>
</tr>
<tr>
<td>13</td>
<td>RESERVED</td>
<td>Not used.</td>
</tr>
<tr>
<td>14</td>
<td>EXT FAULT 1</td>
<td>Digital input defined to report first external fault is active. See parameter 3003 EXTERNAL FAULT 1.</td>
</tr>
<tr>
<td>15</td>
<td>EXT FAULT 2</td>
<td>Digital input defined to report second external fault is active. See parameter 3004 EXTERNAL FAULT 2.</td>
</tr>
<tr>
<td>16</td>
<td>EARTH FAULT</td>
<td>The load on the input power system is out of balance. Check for faults in the motor or motor cable. Verify that motor cable does not exceed maximum specified length.</td>
</tr>
<tr>
<td>17</td>
<td>UNDERTOLOAD</td>
<td>Motor load is lower than expected. Check for disconnected load. Check parameters 3013 UNDERTOLOAD FUNCTION through 3015 UNDERTOLOAD CURVE.</td>
</tr>
<tr>
<td>18</td>
<td>THERM FAIL</td>
<td>Internal fault. The thermistor measuring the internal temperature of the drive is open or shorted. Contact Carrier.</td>
</tr>
<tr>
<td>19</td>
<td>OPEX LINK</td>
<td>Internal fault. A communication—related problem has been detected between the OMIO and OINT boards. Contact Carrier.</td>
</tr>
<tr>
<td>20</td>
<td>OPEX PWR</td>
<td>Internal fault. Low voltage condition detected on the OINT board. Contact Carrier.</td>
</tr>
<tr>
<td>21</td>
<td>CURR MEAS</td>
<td>Internal fault. Current measurement is out of range. Contact Carrier.</td>
</tr>
<tr>
<td>22</td>
<td>SUPPLY PHASE</td>
<td>Ripple voltage in the DC link is too high. Check for missing main phase or blown fuse.</td>
</tr>
<tr>
<td>23</td>
<td>RESERVED</td>
<td>Not used.</td>
</tr>
<tr>
<td>24</td>
<td>OVERSPEED</td>
<td>Motor speed is greater than 120% of the larger (in magnitude) of 2001 MINIMUM SPEED or 2002 MAXIMUM SPEED parameters. Check parameter settings for 2001 and 2002. Check adequacy of motor braking torque. Check applicability of torque control. Check brake chopper and resistor.</td>
</tr>
<tr>
<td>25</td>
<td>RESERVED</td>
<td>Not used.</td>
</tr>
<tr>
<td>26</td>
<td>DRIVE ID</td>
<td>Internal fault. Configuration block drive ID is not valid.</td>
</tr>
<tr>
<td>27</td>
<td>CONFIG FILE</td>
<td>Internal configuration file has an error. Contact Carrier.</td>
</tr>
<tr>
<td>28</td>
<td>SERIAL 1 ERR</td>
<td>Field bus communication has timed out. Check fault setup (3018 COMM FAULT FUNC and 3019 COMM FAULT TIME). Check communication settings (Group 51 or 53 as appropriate). Check for poor connections and/or noise on line.</td>
</tr>
<tr>
<td>29</td>
<td>EFB CON FILE</td>
<td>Error in reading the configuration file for the field bus adapter.</td>
</tr>
<tr>
<td>30</td>
<td>FORCE TRIP</td>
<td>Fault trip forced by the field bus. See the field bus reference literature.</td>
</tr>
<tr>
<td>31</td>
<td>EFB 1</td>
<td>Fault code reserved for the EFB protocol application. The meaning is protocol dependent.</td>
</tr>
<tr>
<td>32</td>
<td>EFB 2</td>
<td>Fault code reserved for the EFB protocol application. The meaning is protocol dependent.</td>
</tr>
<tr>
<td>33</td>
<td>EFB 3</td>
<td>Fault code reserved for the EFB protocol application. The meaning is protocol dependent.</td>
</tr>
<tr>
<td>34</td>
<td>MOTOR PHASE</td>
<td>Fault in the motor circuit. One of the motor phases is lost. Check for motor fault, motor cable fault, thermal relay fault, or internal fault.</td>
</tr>
<tr>
<td>35</td>
<td>OUTP Wiring</td>
<td>Error in power wiring suspected. Check that input power wired to drive output. Check for ground faults.</td>
</tr>
<tr>
<td>101–105</td>
<td>SYSTEM ERROR</td>
<td>Error internal to the drive. Contact Carrier and report the error number.</td>
</tr>
<tr>
<td>201–206</td>
<td>SYSTEM ERROR</td>
<td>Error internal to the drive. Contact Carrier and report the error number.</td>
</tr>
<tr>
<td>FAULT CODE</td>
<td>FAULT NAME IN PANEL</td>
<td>DESCRIPTION AND RECOMMENDED CORRECTIVE ACTION</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>1000</td>
<td>PAR HZRPM</td>
<td>Parameter values are inconsistent. Check for any of the following: 2001 MINIMUM SPEED &gt; 2002 MAXIMUM SPEED 2007 MINIMUM FREQ &gt; 2008 MAXIMUM FREQ 2001 MINIMUM SPEED / 9908 MOTOR NOM SPEED is outside of the range: −128/+128 2002 MAXIMUM SPEED / 9908 MOTOR NOM SPEED is outside of the range: −128/+128 2007 MINIMUM FREQ / 9907 MOTOR NOM FREQ is outside of the range: −128/+128 2008 MAXIMUM FREQ / 9907 MOTOR NOM FREQ is outside of the range: −128/+128</td>
</tr>
<tr>
<td>1001</td>
<td>PAR PFA REFNG</td>
<td>Parameter values are inconsistent. Check that 2007 MINIMUM FREQ is negative, when 8123 PFA ENABLE is active.</td>
</tr>
<tr>
<td>1002</td>
<td>PAR PFA IOCNF</td>
<td>Parameter values are inconsistent. The number of programmed PFA relays does not match with Interlock configuration, when 8123 PFA ENABLE is active. Check consistency of RELAY OUTPUT parameters 1401 through 1403, and 1410 through 1412. Check 8117 NR OF AUX MOTORS, 8118 AUTOCHANGE INTERV, and 8120 INTERLOCKS.</td>
</tr>
<tr>
<td>1003</td>
<td>PAR AI SCALE</td>
<td>Parameter values are inconsistent. Check that parameter 1301 Al 1 MIN &gt; 1302 Al 1 MAX and that parameter 1304 Al 2 MIN &gt; 1305 Al 2 MAX.</td>
</tr>
<tr>
<td>1004</td>
<td>PAR AO SCALE</td>
<td>Parameter values are inconsistent. Check that parameter 1504 AO 1 MIN &gt; 1505 AO 1 MAX and that parameter 1510 AO 2 MIN &gt; 1511 AO 2 MAX.</td>
</tr>
<tr>
<td>1005</td>
<td>PAR PCU 2</td>
<td>Parameter values for power control are inconsistent: Improper motor nominal kVA or motor nominal power. Check the following parameters: 1.1 &lt; (9906 MOTOR NOM CURR * 9905 MOTOR NOM VOLT * 1.73 / PN) &lt; 2.6 Where: PN = 1000 * 9909 MOTOR NOM POWER (if units are kW) or PN = 746 * 9909 MOTOR NOM POWER (if units are HP, e.g., in US)</td>
</tr>
<tr>
<td>1006</td>
<td>PAR EXT RO</td>
<td>Parameter values are inconsistent. Check the extension relay module for connection and 1410 through 1412 RELAY OUTPUTS 4 through 6 have non-zero values.</td>
</tr>
<tr>
<td>1007</td>
<td>PAR FBUS</td>
<td>Parameter values are inconsistent. Check that a parameter is set for field bus control (e.g., 1001 EXT1 COMMANDS = 10 (COM(M)), but 9802 COMM PROT SEL = 0.</td>
</tr>
<tr>
<td>1008</td>
<td>PAR PFA MODE</td>
<td>Parameter values are inconsistent. The 9904 MOTOR CTRL MODE must = 3 (SCALAR SPEED) when 8123 PFA ENABLE activated.</td>
</tr>
<tr>
<td>1009</td>
<td>PAR PCU 1</td>
<td>Parameter values for power control are inconsistent or improper motor nominal frequency or speed. Check for both of the following: 1 &lt; (60 * 9907 MOTOR NOM FREQ / 9908 MOTOR NOM SPEED &lt; 16 0.8 &lt; 9908 MOTOR NOM SPEED / (120 * 9907 MOTOR NOM FREQ / Motor poles) &lt; 0.992</td>
</tr>
<tr>
<td>1010</td>
<td>OVERRIDE/PFA CONFLICT</td>
<td>Override mode is enabled and PFA is activated at the same time. This cannot be done because PFA interlocks cannot be observed in the override mode.</td>
</tr>
<tr>
<td>ALARM CODE</td>
<td>ALARM NAME IN PANEL</td>
<td>DESCRIPTION AND RECOMMENDED CORRECTIVE ACTION</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------</td>
<td>------------------------------------------------</td>
</tr>
<tr>
<td>2001</td>
<td>–</td>
<td>Reserved</td>
</tr>
<tr>
<td>2002</td>
<td>–</td>
<td>Reserved</td>
</tr>
<tr>
<td>2003</td>
<td>–</td>
<td>Reserved</td>
</tr>
<tr>
<td>2004</td>
<td>DIR LOCK</td>
<td>The change in direction being attempted is not allowed. Do not attempt to change the direction of motor rotation, or Change parameter 1003 DIRECTION to allow direction change (if reverse operation is safe).</td>
</tr>
<tr>
<td>2005</td>
<td>I/O COMM</td>
<td>Field bus communication has timed out. Check fault setup (3018 COMM FAULT FUNC and 3019 COMM FAULT TIME). Check communication settings (Group 51 or 53 as appropriate). Check for poor connections and/or noise on line.</td>
</tr>
<tr>
<td>2006</td>
<td>AL1 LOSS</td>
<td>Analog input 1 is lost, or value is less than the minimum setting. Check input source and connections. Check the parameter that sets the minimum (3021) and the parameter that sets the Alarm/Fault operation (3001).</td>
</tr>
<tr>
<td>2007</td>
<td>AL2 LOSS</td>
<td>Analog input 2 is lost, or value is less than the minimum setting. Check input source and connections. Check parameter that sets the minimum (3022) and the parameter that sets the Alarm/Fault operation (3001).</td>
</tr>
<tr>
<td>2008</td>
<td>PANEL LOSS</td>
<td>Panel communication is lost and either the VFD is in local control mode (the control panel displays HAND), or the VFD is in remote control mode (AUTO) and is parameterized to accept start/stop, direction or reference from the control panel. To correct, check the communication lines and connections, Parameter 3002 PANEL LOSS, and parameters in groups 10 COMMAND INPUTS and 11 REFERENCE SELECT (if drive operation is REM).</td>
</tr>
<tr>
<td>2009</td>
<td>–</td>
<td>Reserved</td>
</tr>
<tr>
<td>2010</td>
<td>MOT OVERTEMP</td>
<td>Motor is hot, based on either the VFD estimate or on temperature feedback. This alarm warns that a Motor Overload fault trip may be near. Check for overloaded motor. Adjust the parameters used for the estimate (3005 through 3009). Check the temperature sensors and Group 35 parameters.</td>
</tr>
<tr>
<td>2011</td>
<td>UNDERLOAD</td>
<td>Motor load is lower than expected. This alarm warns that a Motor Underload fault trip may be near. Check that the motor and drive ratings match (motor is NOT undersized for the drive). Check the settings on parameters 3013 to 3015.</td>
</tr>
<tr>
<td>2012</td>
<td>MOTOR STALL</td>
<td>Motor is operating in the stall region. This alarm warns that a Motor Stall fault trip may be near.</td>
</tr>
<tr>
<td>2013*</td>
<td>AUTORESET</td>
<td>This alarm warns that the drive is about to perform an automatic fault reset, which may start the motor. To control automatic reset, use parameter group 31 (AUTOMATIC RESET).</td>
</tr>
<tr>
<td>2014</td>
<td>AUTOCHANGE</td>
<td>This alarm warns that the PFA autochange function is active. To control PFA, use parameter group 81 (PFA) and the Pump Alternation macro.</td>
</tr>
<tr>
<td>2015</td>
<td>PFA INTERLOCK</td>
<td>This alarm warns that the PFA interlocks are active, which means that the drive cannot start any motor (when Autochange is used), or a speed regulated motor (when Autochange is not used).</td>
</tr>
<tr>
<td>2016</td>
<td>–</td>
<td>Reserved</td>
</tr>
<tr>
<td>2017*</td>
<td>OFF BUTTON</td>
<td>This alarm indicates that the OFF button has been pressed.</td>
</tr>
<tr>
<td>2018</td>
<td>PID SLEEP</td>
<td>This alarm warns that the PID sleep function is active, which means that the motor could accelerate when the PID sleep function ends. To control PID sleep, use parameters 4022 through 4026 or 4122 through 4126.</td>
</tr>
<tr>
<td>2019</td>
<td>ID RUN</td>
<td>The VFD is performing an ID run.</td>
</tr>
<tr>
<td>2020</td>
<td>OVERRIDE</td>
<td>Override mode is activated.</td>
</tr>
<tr>
<td>2021</td>
<td>START ENABLE 1 MISS</td>
<td>This alarm warns that the Start Enable 1 signal is missing. To control Start Enable 1 function, use parameter 1608. To correct, check the digital input configuration and the communication settings.</td>
</tr>
<tr>
<td>2022</td>
<td>START ENABLE 2 MISS</td>
<td>This alarm warns that the Start Enable 2 signal is missing. To control Start Enable 2 function, use parameter 1609. To correct, check the digital input configuration and the communication settings.</td>
</tr>
<tr>
<td>2023</td>
<td>EMERGENCY STOP</td>
<td>Emergency stop is activated.</td>
</tr>
</tbody>
</table>

* This alarm is not indicated by a relay output, even when the relay output is configured to indicate alarm conditions, parameter 1401 RELAY OUTPUT = 5 (ALARM) or 16 (FLT/ALARM).
UNIT START-UP CHECKLIST
(Remove and Store in Job File)

NOTE: To avoid injury to personnel and damage to equipment or property when completing the procedures listed in this start-up checklist, use good judgement, follow safe practices, and adhere to the safety considerations/information as outlined in the preceding sections of this Installation Instructions document.

MODEL NO: ___________________________ SERIAL NO: ___________________________

I. PRE-START-UP
☐ VERIFY THAT ALL PACKAGING MATERIALS HAVE BEEN REMOVED FROM UNIT
☐ VERIFY INSTALLATION OF OUTDOOR AIR HOOD
☐ VERIFY INSTALLATION OF FLUE EXHAUST AND INLET HOOD
☐ VERIFY THAT CONDENSATE CONNECTION IS INSTALLED PER INSTRUCTIONS
☐ VERIFY THAT ALL ELECTRICAL CONNECTIONS AND TERMINALS ARE TIGHT
☐ VERIFY GAS PRESSURE TO UNIT GAS VALVE IS WITHIN SPECIFIED RANGE
☐ CHECK GAS PIPING FOR LEAKS
☐ CHECK THAT INDOOR-AIR FILTERS ARE CLEAN AND IN PLACE
☐ CHECK THAT OUTDOOR AIR INLET SCREENS ARE IN PLACE
☐ VERIFY THAT UNIT IS LEVEL
☐ CHECK FAN WHEELS AND PROPELLER FOR LOCATION IN HOUSING/ORIFICE AND VERIFY SETSCREW IS TIGHT
☐ VERIFY THAT FAN SHEAVES ARE ALIGNED AND BELTS ARE PROPERLY TENSIONED
☐ VERIFY THAT SCROLL COMPRESSORS ARE ROTATING IN THE CORRECT DIRECTION
☐ VERIFY INSTALLATION OF THERMOSTAT
☐ VERIFY THAT CRANKCASE HEATERS HAVE BEEN ENERGIZED FOR AT LEAST 24 HOURS

II. START-UP
ELECTRICAL
SUPPLY VOLTAGE L1-L2 ________ L2-L3 ________ L3-L1 ________
COMPRESSOR AMPS 1 L1 ________ L2 ________ L3 ________
COMPRESSOR AMPS 2 L1 ________ L2 ________ L3 ________
SUPPLY FAN AMPS L1 ________ L2 ________ L3 ________

TEMPERATURES
OUTDOOR-AIR TEMPERATURE ________ °F DB (DRY BULB)
RETURN-AIR TEMPERATURE ________ °F DB ________ °F WB (WET BULB)
COOLING SUPPLY AIR TEMPERATURE ________ °F
GAS HEAT SUPPLY AIR ________ °F

PRESSURES
GAS INLET PRESSURE ________ IN. WG
GAS MANIFOLD PRESSURE STAGE 1 ________ IN. WG
STAGE 2 ________ IN. WG
REFRIGERANT SUCTION CIRCUIT A ________ PSIG
CIRCUIT B ________ PSIG
REFRIGERANT DISCHARGE CIRCUIT A ________ PSIG
CIRCUIT B ________ PSIG

☐ VERIFY REFRIGERANT CHARGE USING CHARGING CHARTS
GENERAL

- Economizer minimum vent and changeover settings to job requirements (if equipped)
- Verify smoke detector unit shutdown by utilizing magnet test

III. HUMIDI-MIZER® SYSTEM START-UP

NOTE: Units equipped with RTU-Open controls have Service Test menus or modes that can assist with the Humidi-MiZer System Start-Up function and provide the means to make the observations listed for this start-up.

STEPS

1. Check CTB for jumper 5, 6, 7
   Jumper 5, 6, 7 must be cut and open
2. Open humidistat contacts
3. Start unit in cooling (close Y1)

   Observe and record
   a. Suction pressure ________ PSIG
   b. Discharge pressure ________ PSIG
   c. Entering air temperature ________ °F
   d. Liquid line temperature at outlet or reheat coil ________ °F
   e. Confirm correct rotation for compressor
   f. Check for correct ramp-up of outdoor fan motor as condenser coil warms

4. Check unit charge per charging chart
5. Switch unit to high-latent mode (subcooler) by closing humidistat with Y1 closed

   Observe
   a. Reduction in suction pressure (5 to 7 PSI expected)
   b. Discharge pressure unchanged
   c. Liquid temperature drops to 50 to 55°F range
   d. LSV solenoid energized (valve closes)
6. Switch unit to dehumid (reheat) by opening Y1

   Observe
   a. Suction pressure increases to normal cooling level
   b. Discharge pressure decreases (35 to 50 PSI)
   c. Liquid temperature returns to normal cooling level
   d. LSV solenoid energized (valve closes)
   e. DSV solenoid energized, valve opens
7. With unit in dehumid mode close W1
   Compressor and outdoor fan stop; LSV and DSV solenoids de-energized
8. Open W1 restore unit to dehumid mode
9. Open humidistat input
   Compressor and outdoor fan stop; LSV and DSV solenoids de-energized
10. Restore setpoints for thermostat and humidistat

REPEAT PROCESS FOR 2 COMPRESSOR SYSTEMS