Installation Instructions
Part No: CRECOMZR072A01 and CRECOMZR073A01

CONTENTS

SAFETY CONSIDERATIONS 1
GENERAL .. 1, 2
Compliance ... 2
INSTALLATION ... 3-11
Vertical Installation 3
Horizontal Installation 6
Accessories ... 7
Power Exhaust .. 11
Demand Controlled Ventilation 11
Fire and Smoke Control 11
START-UP ... 11
OPERATION ... 12-14

SAFETY CONSIDERATIONS

Installation of this accessory can be hazardous due to system pressures, electrical components, and equipment locations (such as a roof or elevated structure).

Only trained, qualified installers and service technicians should install, start-up, and service this equipment.

When installing this accessory, observe precautions in the literature and on any labels attached to the equipment, and all other safety precautions that may apply.

- Follow all safety codes.
- Wear safety glasses and work gloves.
- Use care in handling and installing this accessory.

Recognize safety information. This is the safety-alert symbol. When you see this symbol on the unit and in instructions or manuals, be alert to the potential for personal injury.

Understand the signal words DANGER, WARNING, and CAUTION. These words are used with the safety-alert symbol. DANGER identifies the most serious hazards which will result in severe personal injury or death. WARNING signifies a hazard which could result in personal injury or death. CAUTION is used to identify unsafe practices which may result in minor personal injury or product and property damage. NOTE is used to highlight suggestions which will result in enhanced installation, reliability, or operation.

GENERAL

The EconoMi$er® 2 accessories, with 4 to 20 mA actuator signal control, do not have a built-in controller. The economizer actuator is operated by a 4 to 20 mA signal from an existing field-supplied controller (such as PremierLink™ control). A 12-pin plug is provided for connection to the control.

Refer to the specific DDC (Direct Digital Controls) literature for how to indicate economizer alarm/errors in the building space. Alarm/error indication may be required for local regulation compliance.

The EconoMi$er 2 system uses gear-drive technology with a direct-mount spring return actuator that will close upon loss of power. Differential dry bulb, enthalpy, and differential enthalpy sensors are available for field installation. Field-installed CO2 sensors are available (see Table 5).

Optional barometric relief dampers provide natural building pressurization control. An optional power exhaust system is available for applications requiring even greater exhaust capabilities. The power exhaust set point is adjustable at the EconoMi$er 2 controller.

To see which economizer is used on specific Carrier, Bryant, or ICP models see Tables 1-3. See Table 4 for package contents and Table 5 for PremierLink™ controller sensor usage.

WARNING

Electrical shock can cause personal injury and death. Shut off all power to this equipment during installation. There may be more than one disconnect switch. Tag all disconnect locations to alert others not to restore power until work is completed.

CAUTION

Failure to follow this caution may result in personal injury and damage to unit. Cover the duct opening as a precaution so objects cannot fall into the return duct opening. Be sure to remove the cover when installation is complete.

IMPORTANT: Read these instructions completely before attempting to install the accessory economizer.

Economizers meet California Energy Commission Title 24 / 2016 prescriptive section 140.4 (damper leakage etc.), and when used with Carrier ComfortLink, RTU Open, PremierLink™, System Vu™, or I/O Flex 6126 control systems, meet mandatory section 120.2.i for Fault Detection and Diagnostic requirements.

Economizers meet ASHRAE 90.1-2013 / 2016 damper leakage requirements as stated in Section 6.5.1.1.4 and Table 6.4.3.4.3, and meet 2016 Fault Detection and Diagnostic requirements in section 6.4.3.12 when used with Carrier ComfortLink, RTU Open, Premierlink, System Vu, or I/O Flex control systems.

Economizers meet IECC 2012 section C402.4.5.2 and, IECC 2015 sections C403.2.4.3 and C403.3.3.5 for outside air, return air, and relief damper leakage requirements, and when used with Carrier ComfortLink, RTU Open, Premierlink, System Vu, or I/O Flex control systems meet IECC 2015 section C403.2.4.7 for Fault Detection and Diagnostic requirements. Note: IECC 2015 section C403.2.4.7.1 requires differential return air sensor, which must be ordered separately.

Outside air and return air (volume) dampers are AMCA (Air Movement and Control Association) rated. Relief air dampers are also AMCA rated.

Table 1 — Carrier Usage Chart

<table>
<thead>
<tr>
<th>CARRIER MODEL NUMBER</th>
<th>EconoMi$er® 2 PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>48/50TC 17-24</td>
<td>CRECOMZR072A01</td>
</tr>
<tr>
<td>48/50HC 17-20</td>
<td>CRECOMZR072A01</td>
</tr>
<tr>
<td>50TCQ 17, 24</td>
<td>CRECOMZR073A01</td>
</tr>
<tr>
<td>48/50TC 28-30</td>
<td>CRECOMZR073A01</td>
</tr>
<tr>
<td>48/50HC 24-28</td>
<td>CRECOMZR073A01</td>
</tr>
</tbody>
</table>

Table 2 — Bryant Usage Chart

<table>
<thead>
<tr>
<th>BRYANT MODEL NUMBER</th>
<th>EconoMi$er® 2 PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>580J, 558J 17-24</td>
<td>CRECOMZR072A01</td>
</tr>
<tr>
<td>581J, 551J 17-20</td>
<td>CRECOMZR072A01</td>
</tr>
<tr>
<td>548J 17-24</td>
<td>CRECOMZR072A01</td>
</tr>
<tr>
<td>580J, 558J 28-30</td>
<td>CRECOMZR073A01</td>
</tr>
<tr>
<td>581J, 551J 24-28</td>
<td>CRECOMZR073A01</td>
</tr>
</tbody>
</table>

Table 3 — ICP Usage Chart

<table>
<thead>
<tr>
<th>ICP MODEL NUMBER</th>
<th>EconoMi$er® 2 PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGS, RAS 181, 183, 210, 213, 240, 243</td>
<td>CRECOMZR072A01</td>
</tr>
<tr>
<td>RGS, RAH 181, 210</td>
<td>CRECOMZR072A01</td>
</tr>
<tr>
<td>RHS 181, 240</td>
<td>CRECOMZR073A01</td>
</tr>
<tr>
<td>RGS, RAS 300, 303, 336</td>
<td>CRECOMZR073A01</td>
</tr>
<tr>
<td>RGS, RAH 240, 300</td>
<td>CRECOMZR073A01</td>
</tr>
</tbody>
</table>

Table 4 — Package Contents

<table>
<thead>
<tr>
<th>QTY</th>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Damper assembly with shroud</td>
</tr>
<tr>
<td>1</td>
<td>Upper end economizer panel</td>
</tr>
<tr>
<td>1</td>
<td>Bottom panel with relief damper (for vertical only)</td>
</tr>
<tr>
<td>1</td>
<td>Bottom panel #2 (for horizontal only)</td>
</tr>
<tr>
<td>1</td>
<td>Side replacement panel (for horizontal only)</td>
</tr>
<tr>
<td>4</td>
<td>Hood angles</td>
</tr>
<tr>
<td>2</td>
<td>Hood side plates</td>
</tr>
<tr>
<td>1</td>
<td>Hood top</td>
</tr>
<tr>
<td>2</td>
<td>Side filter supports</td>
</tr>
<tr>
<td>2</td>
<td>Side drip angles</td>
</tr>
<tr>
<td>2</td>
<td>Top hood diverters</td>
</tr>
<tr>
<td>60</td>
<td>Screws #10 — 16 x 7/8 in.</td>
</tr>
<tr>
<td>14 ft</td>
<td>Seal strip — 7/8 in. x 3/4 in.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QTY</th>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Damper assembly with shroud</td>
</tr>
<tr>
<td>1</td>
<td>Upper end economizer panel</td>
</tr>
<tr>
<td>1</td>
<td>Bottom panel with relief damper (for vertical only)</td>
</tr>
<tr>
<td>1</td>
<td>Bottom panel #2 (for horizontal only)</td>
</tr>
<tr>
<td>1</td>
<td>Hood angles</td>
</tr>
<tr>
<td>4</td>
<td>Hood side panels</td>
</tr>
<tr>
<td>2</td>
<td>Hood top</td>
</tr>
<tr>
<td>1</td>
<td>Outdoor air screens</td>
</tr>
<tr>
<td>4</td>
<td>Side filter supports</td>
</tr>
<tr>
<td>2</td>
<td>Side drip angles</td>
</tr>
<tr>
<td>2</td>
<td>Top hood diverters</td>
</tr>
<tr>
<td>60</td>
<td>Screws #10 — 16 x 7/8 in.</td>
</tr>
<tr>
<td>14 ft</td>
<td>Seal strip — 7/8 in. x 3/4 in.</td>
</tr>
</tbody>
</table>

Table 5 — PremierLink™ Controller Sensor Usage

<table>
<thead>
<tr>
<th>DESIRED CONTROL METHOD</th>
<th>FIELD-INSTALLED DRY BULB ACCESSORY EconoMi$er® 2</th>
<th>FACTORY-INSTALLED DRY BULB SENSOR EconoMi$er® 2</th>
<th>FACTORY-INSTALLED ENTHALPY SENSOR EconoMi$er® 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Dry Bulb Temperature Control</td>
<td>NONE: Outside air dry bulb sensor is factory-installed</td>
<td>NONE: Outside air dry bulb sensor is factory-installed</td>
<td>N/A</td>
</tr>
<tr>
<td>Differential Dry Bulb Temperature Control</td>
<td>(1) CRTEMPSN001A00 or (1) 33ZCT55SPT, T56, T59 or (1) 33PILOT-01</td>
<td>(1) CRTEMPSN001A00 or (1) 33ZCT55SPT, T56, T59 or (1) 33PILOT-01</td>
<td>N/A</td>
</tr>
<tr>
<td>Single Enthalpy</td>
<td>(1) 33CSENTHSW</td>
<td>(1) 33CSENTHSW</td>
<td>NONE: Outside air dry bulb sensor is factory-installed</td>
</tr>
<tr>
<td>Differential Enthalpy</td>
<td>(1) 33CSENTHSW OR (1) 33CSENTSEN</td>
<td>(1) 33CSENTHSW and (1) 33CSENTSEN</td>
<td>Outside Air Enthalpy sensor is factory-installed plus (1) 33CSENTSEN</td>
</tr>
</tbody>
</table>

LEGEND

N/A — Not available

NOTES:

1. CO₂ Sensors (Optional)
2. OAT (Outdoor-Air Thermistor) included with EconoMi$er. Space sensor required when using PremierLink controls.
INSTALLATION

Vertical Installation — These economizers are designed to work in both vertical and horizontal applications. For a vertical installation:

1. Turn off unit’s power supply and install lockout tag.
2. Prepare the unit for economizer installation:
 - For units with 2 position damper installed, remove the outside air hood. Unplug the damper actuator and remove assembly from unit.
 - For units with manual damper installed, remove the manual damper and hood.
3. Remove the upper panel and bottom panel (provided with the HVAC unit) on the end of the unit to expose the return section. Save the screws for later when replacing the bottom panel. The panels shipped with the unit can be discarded (see Fig. 1).
4. Remove the unit’s left side corner post and left side panel to allow for easy economizer installation (see Fig. 2).
5. Install economizer, with shroud attached as shown in Fig. 2, into the return air section of the unit. Be careful not to pinch the wires during installation. The bottom of economizer will rest on the base of the unit (see Fig. 3 and 4).

 NOTE: The outside air damper is rated to meet ASHRAE requirements for leakage. It is important that the damper be perfectly square in the unit.

6. Reinstall the left side corner post on to the unit.

 NOTE: The corner post will sit behind the economizer shroud flange (see Fig. 5). Screw through the corner post and through the economizer shroud (see Fig. 3 and 5).
7. Insert provided screw through the bottom left rear of the economizer and into the unit base (see Fig. 3). Reinstall the unit’s left side panel.
8. Before the economizer is secured in place on the right hand side, remove and save the 12-pin jumper plug from the unit wiring harness (see Fig. 6). Insert the economizer plug into the unit wiring harness plug (see Fig. 6).

NOTE: The 12-pin jumper plug should be saved for future use in the event that the EconoMi$er® 2 is removed from the unit. The jumper plug is not needed as long as the EconoMi$er 2 system is installed.

9. Install the bottom panel with the relief damper attached on the unit (see Fig. 7). Screw panel in place.

NOTE: Remove the bottom screw holding the relief blade closed.

10. Install the upper end economizer panel over the economizer’s outside air damper, and above the bottom panel. Screw panel in place and screw panel into economizer in 2 places (see Fig. 8).

11. Assemble the outside air hood per Fig. 9 and 10.
 a. Install four hood angles to the upper end panel using the screws provided.
 b. Apply seal strip to mating flanges on the side plates of the hood and the hood top.
 c. Secure the hood side plates to the panel using screws provided.
 d. CRECOMZR072A01: Remove screws across top cover. Attach hood top to hood side plates. (Flange will slide behind flange of top cover.)
 e. CRECOMZR072A01: Reinstall the screws previously removed. CRECOMZR073A01: Secure top flange using screws provided in kit.
 f. Install the front outdoor air screens by sliding them into the channel formed by the four angles installed previously. Make sure the screens extend across the entire length of the hood.
 NOTE: Screens may be left out at this time to allow for EconoMi$er 2 adjustments.
 g. Install the side filter supports using the screws provided.
 h. Install the side drip edge angles using the screws provided.
 i. Run a continuous length of seal strip across the hood covering the engagement hole in the lower hood.
 j. Install top diverter using screws provided.

Fig. 9 — Hood Assembly

12. Install the hood assembly on the unit (see Fig. 10 and 11).

<table>
<thead>
<tr>
<th>ITEM #</th>
<th>DESCRIPTION</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Angles</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Side Plates</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Hood</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Outdoor Air Screens</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Side Filter Supports</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Side Drip Angles</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Top Diverters</td>
<td>2</td>
</tr>
</tbody>
</table>
13. Install the hood screens and other approved EconoMiSer® 2 accessories.
14. Install the hood assembly onto the unit (see Fig. 10 and 11).
15. If barometric relief is required, remove the relief damper and hinges from the (provided) bottom panel used on vertical applications. Reinstall the hinges and damper on the side of the field-supplied return duct (see Fig. 12).
NOTE: A relief hood for the horizontal application can be ordered separately (part number CRBARHOD001A00) or can be field-supplied.
16. Install the hood screens and other approved EconoMiSer 2 accessories.
Horizontal Installation — These economizers are designed to work in both vertical and horizontal applications. These instructions are for a horizontal installation.

The unit has a horizontal duct opening next to the horizontal supply duct opening. However, in this application, with an economizer, the horizontal duct will actually come into the unit underneath the outdoor air hood (see Fig. 13).

1. Turn off unit power supply and install lockout tag.
2. Prepare the unit for economizer installation:
 a. For units with 2 position damper installed, remove the outside air hood. Unplug the damper actuator and remove assembly from unit.
 b. For units with manual damper installed, remove the manual damper and hood.
3. Remove the upper panel and bottom panel (provided with the HVAC unit) on the end of the unit to expose the return section (see Fig. 1). Save the screws for later, when replacing the panel. The panels shipped with the unit can be discarded.
4. Remove the unit’s left side corner post and left side panel to allow for easy economizer installation (see Fig. 14).
 NOTE: The unit’s left side panel has a duct opening in it, but this panel/duct opening will not be used in this application and can be discarded.
5. Install economizer with shroud attached, as shown in Fig. 2, into the return air section of the unit. Be careful not to pinch the wires during installation. Bottom of economizer will rest on the base of the unit (see Fig. 3).
6. Reinstall the left side corner post on to the unit. Note the corner post will sit behind the economizer shroud flange (see Fig. 5). Screw through the corner post and through the economizer shroud (see Fig. 5 and 6).
7. Insert provided screw through the bottom left rear of the economizer and into the unit base (see Fig. 3). Install the new (provided) left side panel without the duct opening on the unit.
8. Before the economizer is secured in place on the right hand side, remove and save the 12-pin jumper plug from the unit wiring harness (see Fig. 6). Insert the EconoMi$er® 2 plug into the unit wiring harness plug (see Fig. 6).
 NOTE: The 12-pin jumper plug should be saved for future use in the event that the EconoMi$er 2 is removed from the unit. The jumper plug is not needed as long as the EconoMi$er 2 is installed.
9. Install the (provided) bottom panel with the horizontal return duct opening on the unit (see Fig. 13). Screw panel in place.
10. Install the upper end economizer panel in place over the economizer’s outside air damper, and above the bottom panel (see Fig. 15). Screw panel in place and screw panel into economizer in 2 places (see Fig. 8).
11. To assemble the outside air hood follow the steps below and see Fig. 9 and 10.
 a. Install four hood angles to the upper end panel using the screws provided.
 b. Apply seal strip to mating flanges on the side plates of the hood and the hood top.
 c. Secure the hood side plates to the panel using screws provided.
 d. CRECOMZR072A01 remove screws across top cover. Attach hood top to hood side plates (flange will slide behind flange of top cover).
 e. CRECOMZR072A01 reinstall the screws previously removed. CRECOMZR073A01 secure top flange using screws provided in kit.
 f. Install the four outdoor air screens by sliding then into the channel formed by the four angles installed previously. Make sure the screens extend across the entire length of the hood.
 g. Install the side filter supports using the screws provided.
h. Install the side drip edge angles using the screws provided.

i. Run a continuous length of seal strip across the hood covering the engagement hole in the lower hood.

j. Install top diverter using screws provided.

12. Install the hood assembly onto the unit (see Fig. 10 and 11).

13. If barometric relief is required, remove the relief damper and hinges from the (provided) bottom panel used on vertical applications. Reinstall the hinges and damper on the side of the field-supplied return duct (see Fig. 12).

NOTE: A relief hood for the horizontal application can be ordered separately (part number CRBARHOD001A00) or can be field supplied.

14. Install the hood screens and other approved EconoMiSer 2 accessories.

Accessories

SUPPLY AIR TEMPERATURE SENSOR (SAT) — When the unit is supplied with a factory-mounted PremierLink™ control, the supply air temperature (SAT) sensor (33ZCENSAT) is factory supplied and wired. The wiring is routed from the PremierLink control over the control box, through a grommet, into the fan section, down along the back side of the fan, and along the fan deck over to the supply-air opening.

The SAT sensor is wire tied to the supply air opening (on the horizontal opening end) in its shipping position. Remove the sensor for installation. Re-position the sensor in the flange of the supply air opening or in the supply air duct (as required by local codes). Drill or punch a 1/2 in. hole in the flange or duct. Use two field-supplied, self-drilling screws to secure the sensor probe in a horizontal orientation.

OUTDOOR AIR TEMPERATURE SENSOR (OAT) — When the unit is supplied with a factory-mounted PremierLink™ control, the outdoor air temperature sensor (OAT) is factory supplied and wired. The pink and violet wires of the 12-pin economizer harness (pin 5 and 6) are used to connect the OAT sensor to the PremierLink board.

INDOOR AIR QUALITY (CO2) SENSOR — Mount the optional indoor air quality (CO2) sensor according to manufacturer specifications.

A separate field-supplied transformer must be used to power the CO2 sensor.

Wire the CO2 sensor to the COM and IAQI terminals of J5 on the PremierLink controller. Refer to the PremierLink Installation, Start-up, and Configuration Instructions for detailed wiring and configuration information.

ENTHALPY SENSORS AND CONTROL — Two different sets of enthalpy sensors can be used with the PremierLink control. For single enthalpy control, either the HH57AC077 or 33CENTHSW outdoor enthalpy sensor can be used. For differential enthalpy control, either the HH57AC077 and HH57AC078 sensors or the 33CSENTHSW and 33CSENT-SEN sensors are used. Refer to the appropriate sections below for sensor installation.

OUTDOOR AIR ENTHALPY SENSOR/ENTHALPY CONTROLLER (HH57AC077) — The enthalpy control (HH57AC077) is supplied as a field installed accessory to be used with the economizer damper control option. The outdoor air enthalpy sensor is part of the enthalpy control (see Fig. 16). The separate field-installed accessory return air enthalpy sensor (HH57AC078) is required for differential enthalpy control. (see Fig. 17).

![Fig. 16 — PremierLink™ Controller Wiring — Enthalpy Control (HH57AC077)](image-url)

NOTE: If PremierLink™ controller is grounded and actuator is grounded on common side, then common wire from PremierLink controller J9-2 is not needed.
NOTE: The enthalpy control must be set to the “D” setting for differential enthalpy control to work properly.

The enthalpy control receives the indoor and return enthalpy from the outdoor and return air enthalpy sensors and provides a dry contact switch input to the PremierLink™ controller. Locate the controller in place of an existing economizer controller or near the actuator. The mounting plate may not be needed if an existing bracket is used.

A closed contact indicates that outside air is preferred to the return air. An open contact indicates that the economizer should remain at minimum position.

To wire the outdoor air enthalpy sensor, perform the following (see Fig. 9 and 16):
NOTE: The outdoor air sensor can be removed from the back of the enthalpy controller and mounted remotely.

15. Use a 4-conductor, 18 or 20 AWG (American Wire Gage) cable to connect the enthalpy control to the PremierLink controller and power transformer.

16. Connect the following 4 wires from the wire harness located in rooftop unit to the enthalpy controller:
 a. Connect the BRN wire to the 24 vac terminal (TR1) on enthalpy control and to pin 1 on 12-pin harness.
 b. Connect the RED wire to the 24 vac GND terminal (TR) on enthalpy sensor and to pin 2 on 12-pin harness.
 c. Connect the ORN/GRAY wire to J4-2 on PremierLink controller and to terminal 3 on enthalpy sensor.
 d. Connect the RED/GRAY wire to J4-1 on PremierLink controller and to terminal 2 on enthalpy sensor.

NOTE: If installing in a Carrier rooftop, use the two gray wires provided from the control section to the economizer to connect PremierLink controller to terminals 2 and 3 on enthalpy sensor. If NOT using Carrier equipment, wires may need to be field-supplied and installed.
RETURN AIR ENTHALPY SENSOR (HH57AC078) —
Mount the return air enthalpy sensor (HH57AC078) in the return air duct. The return air sensor is wired to the enthalpy controller (HH57AC077) (see Fig. 18 and 19). The outdoor enthalpy changeover set point is set at the controller.

To wire the return air enthalpy sensor, perform the following (see Fig. 19):
1. Use a 2-conductor, 18 or 20 AWG, twisted pair cable to connect the return air enthalpy sensor to the enthalpy controller.
2. At the enthalpy control remove the factory-installed resistor from the (SR) and (+) terminals.
3. Connect the field-supplied RED wire to (+) spade connector on the return air enthalpy sensor and the (SR+) terminal on the enthalpy controller. Connect the BLK wire to (S) spade connector on the return air enthalpy sensor and the (SR) terminal on the enthalpy controller (see Fig. 19.)

ENTHALPY SWITCH/RECEIVER (33CSENTHSW) —
The accessory enthalpy switch/receiver (33CSENTHSW) senses temperature and humidity of the air surrounding the device and calculates the enthalpy when used without an enthalpy sensor. The relay is energized when enthalpy is high and de-energized when enthalpy is low (based on ASHRAE 90.1 [American Society of Heating, Refrigeration and Air Conditioning Engineers] criteria). If an accessory enthalpy sensor (33CSENTSEN) is attached to the return air sensor input, then differential enthalpy is calculated. The relay is energized when the enthalpy detected by the return air enthalpy sensor is less than the enthalpy at the enthalpy switch/receiver. The relay is de-energized when the enthalpy detected by the return air enthalpy switch/receiver (differential enthalpy control) (see Fig. 20 and 21).

Fig. 19 — Outdoor and Return Air Enthalpy Sensor Wiring

RETURN AIR ENTHALPY SENSOR (HH57AC078) —
Mount the return air enthalpy sensor (HH57AC078) in the return air duct. The return air sensor is wired to the enthalpy controller (HH57AC077) (see Fig. 18 and 19). The outdoor enthalpy changeover set point is set at the controller.

To wire the return air enthalpy sensor, perform the following (see Fig. 19):
1. Use a 2-conductor, 18 or 20 AWG, twisted pair cable to connect the return air enthalpy sensor to the enthalpy controller.
2. At the enthalpy control remove the factory-installed resistor from the (SR) and (+) terminals.
3. Connect the field-supplied RED wire to (+) spade connector on the return air enthalpy sensor and the (SR+) terminal on the enthalpy controller. Connect the BLK wire to (S) spade connector on the return air enthalpy sensor and the (SR) terminal on the enthalpy controller (see Fig. 19.)

ENTHALPY SWITCH/RECEIVER (33CSENTHSW) —
The accessory enthalpy switch/receiver (33CSENTHSW) senses temperature and humidity of the air surrounding the device and calculates the enthalpy when used without an enthalpy sensor. The relay is energized when enthalpy is high and de-energized when enthalpy is low (based on ASHRAE 90.1 [American Society of Heating, Refrigeration and Air Conditioning Engineers] criteria). If an accessory enthalpy sensor (33CSENTSEN) is attached to the return air sensor input, then differential enthalpy is calculated. The relay is energized when the enthalpy detected by the return air enthalpy sensor is less than the enthalpy at the enthalpy switch/receiver. The relay is de-energized when the enthalpy detected by the return air enthalpy switch/receiver (differential enthalpy control) (see Fig. 20 and 21).

Fig. 20 — Enthalpy Switch/Receiver Dimension (33CSENTHSW)

Fig. 21 — Enthalpy Sensor Dimensions

Outdoor Enthalpy Control Requires Only an Enthalpy Switch/Receiver (33CSENTHSW). The enthalpy switch/receiver is mounted in the outdoor air inlet and calculates outdoor air enthalpy. The enthalpy switch/receiver energizes the relay output when the outdoor enthalpy is above 28 Btu/lb OR dry bulb temperature is above 75 F and is de-energized when the outdoor enthalpy is below 27 Btu/lb AND dry bulb temperature is below 74.5 F. The relay output is wired to the unit economizer which will open or close depending on the output of the switch.
NOTE: The enthalpy calculation is done using an average altitude of 1000 ft above sea level.

Mount the enthalpy switch/receiver in a location where the outdoor air can be sampled (such as the outdoor air intake). The enthalpy switch/receiver is not a NEMA 4 enclosure and should be mounted in a location that is not exposed to outdoor elements such as rain or snow. Use two field-supplied no. 8 x 3/4-in. TEK screws. Insert the screws through the holes in the sides of the enthalpy switch/receiver.

Carrier recommends the use of 18 or 22 AWG (American Wire Gage) twisted pair or shielded cable for all wiring. All connections must be made with 1/4-in. female spade connectors.

A 24 vac transformer is required to power the enthalpy switch/receiver. The PremierLink™ board provides 24 vac, as shown in Fig. 22. Connect the GND and 24 vac terminals on the enthalpy switch/receiver to the terminals on the transformer. On some applications, the power from the economizer harness can be used to power the enthalpy switch/receiver. To power the enthalpy switch/receiver from the economizer harness, connect power of the enthalpy switch/receiver to the red and brown wires (1 and 4) on the economizer harness.

For connection to rooftop units with PremierLink control, connect the LOW enthalpy terminal on the enthalpy switch/receiver to J4-pin 2 of the PremierLink control on the HVAC unit. The switch can be powered through the PremierLink control board if desired. Wire the 24 vac terminal on the enthalpy switch/receiver to J4-pin 1 on the PremierLink control. Wire the GND terminal on the enthalpy switch/receiver to J1-pin 2 on the PremierLink control. The HI enthalpy terminal is not used (see Fig. 22).

Differential Enthalpy Control Requires Both an Enthalpy Switch/Receiver (33CSENTHSW) and an Enthalpy Sensor (33CSENTSEN). The enthalpy switch/receiver is mounted in the outdoor air inlet and calculates outdoor air enthalpy. The enthalpy sensor is mounted in the return airstream and calculates the enthalpy of the indoor air.

For differential enthalpy control, the enthalpy switch/receiver energizes the HI enthalpy relay output when the outdoor enthalpy is greater than the indoor enthalpy. The LOW enthalpy terminal is energized when the outdoor enthalpy is lower than the indoor enthalpy. The relay output is wired to the unit economizer which will open or close depending on the output of the switch.

NOTE: The enthalpy calculation is done using an average altitude of 1000 ft above sea level.

Mount the enthalpy sensor in a location where the indoor air can be sampled (such as the return air duct). The enthalpy sensor is not a NEMA 4 enclosure and should be mounted in a location that is not exposed to outdoor elements such as rain or snow. Use two field-supplied no. 8 x 3/4-in. female spade connectors.

The PremierLink board provides 24 vac to power the enthalpy switch/receiver. Connect the GND and 24 vac terminals on the enthalpy switch/receiver to the terminals on the transformer. On some applications, the power from the economizer harness can be used to power the enthalpy switch/receiver. To power the enthalpy switch/receiver from the economizer harness, connect power of the enthalpy switch the red and brown wires (1 and 4) on the economizer harness. Connect the GND and 24 vac terminals on the enthalpy switch/receiver to the terminals on the transformer.

Fig. 22 — PremierLink™ Controller Wiring — Enthalpy Control (33CSENTHSW)
pin 1 on the PremierLink control. Wire the GND terminal on the enthalpy switch/receiver to J1-pin 2 on the PremierLink control. The HI enthalpy terminal is not used (see Fig. 22).

Connect the 4-20 mA IN terminal on the enthalpy switch/receiver to the 4-20 mA OUT terminal on the return air enthalpy sensor. Connect the 24-36 VDC OUT terminal on the enthalpy switch/receiver to the 24-36 VDC IN terminal on the return air enthalpy sensor (see Fig. 23).

There are two jumpers. One jumper determines the mode of the enthalpy sensor. The other jumper is not used. To access the jumpers, remove the 4 screws holding the cover on the enthalpy sensor and then remove the cover. The factory settings for the jumpers are M3 and OFF.

The mode jumper should be set to M3 for 4 to 20 mA output. The factory test jumper should remain OFF or the enthalpy sensor will not calculate enthalpy.

Power Exhaust — Refer to the accessory power exhaust installation instructions for information on installing the power exhaust accessory.

Demand Controlled Ventilation — When using the EconoMiSer® 2 system for demand controlled ventilation, there are some equipment selection criteria which should be considered. When selecting the heat capacity and cool capacity of the equipment, the maximum ventilation rate must be evaluated for design conditions. The maximum damper position must be calculated to provide the desired fresh air.

Typically the maximum ventilation rate will be used about 5 to 10% more than the typical cfm required per person, using normal outside air design criteria. The ventilator software (demand control ventilation software) may be used to determine the CO₂ recovery rate at maximum ventilation.

A proportional anticipatory strategy should be taken with the following condition: a zone with a large area, varied occupancy, and equipment that cannot exceed the required ventilation rate at design conditions. Exceeding the required ventilation rate means the equipment can condition air at a maximum ventilation rate that is greater than the required ventilation rate for maximum occupancy. A proportional anticipatory strategy will cause the fresh air supplied to increase as the room CO₂ level increases even though the CO₂ set point has not been reached. By the time the CO₂ level reaches the set point, the damper will be at maximum ventilation and should maintain the set point.

In order to have the CO₂ sensor control the economizer damper in this manner, first determine the damper voltage output for minimum or base ventilation. Base ventilation is the ventilation required to remove contaminants during unoccupied periods. The following equation may be used to determine the percent of outside air entering the building for a given damper position. For best results there should be at least a 10-degree difference in outside and return air temperatures.

\[
(\text{TO} \times \text{OA}) + (\text{TR} \times \text{RA}) = \text{TM}
\]

\[
\text{TO} = \text{Outdoor-Air Temperature} \\
\text{OA} = \text{Percent of Outdoor-Air} \\
\text{TR} = \text{Return-Air Temperature} \\
\text{RA} = \text{Percent of Return-Air} \\
\text{TM} = \text{Mixed-Air Temperature}
\]

Fire and Smoke Control — The PremierLink™ or third party control can be wired to a smoke detector or alarm system to provide fire and smoke control functions. See Fig. 22.

START-UP — Follow the procedure in Table 6 to check the EconoMiSer 2 system when the unit is started.
OPERATION

NOTE: For units using a third party control, operation of the EconoMi$er 2 system is based on the type of control and sensors used. The following operation sections are for units with PremierLink control only.

Cooling, Units with EconoMi$er 2, Premier-Link Control and a Thermostat — When free cooling is not available, the compressors will be controlled by the PremierLink control in response to the Y1 and Y2 inputs from the thermostat.

The PremierLink control will use the following information to determine if free cooling is available:

• Indoor fan has been on for at least 30 seconds.
• The SPT, SAT, and OAT inputs must have valid readings.
• OAT must be less than 75 F.
• OAT must be less than SPT.
• Enthalpy must be LOW (may be jumpered if an enthalpy sensor not available).
• Economizer position is NOT forced.

Pre-cooling occurs when there is no call from the thermostat except G. Pre-cooling is defined as the economizer modulates to provide 70 F supply air.

When free cooling is available, the PremierLink control will control the compressors and economizer to provide a supply air temperature determined to meet the Y1 and Y2 calls from the thermostat using the following 3 routines. The 3 control routines are based on OAT.

The 3 routines are based on OAT where:
• SASP = Supply Air Set Point
• DXCTLO = Direct Expansion Cooling Lockout Set Point
• PID = Proportional Integral

ROUTINE 1 (OAT<DXCTLO)
• Y1 energized - economizer maintains a SASP = (SATLO1 + 3)
• Y2 energized - economizer maintains a SASP = (SATLO2 + 3)

Table 6 — Start-Up Procedures

<table>
<thead>
<tr>
<th>STEP</th>
<th>PROCEDURE</th>
<th>EXPECTED RESPONSE</th>
<th>ECONOMISER 2 RESPONDS CORRECTLY</th>
<th>ECONOMISER 2 RESPONDS INCORRECTLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Remove power to reset actuator. Re-apply power. Apply control signal to actuator</td>
<td>Actuator will move to its “Control Signal” position</td>
<td>Actuator operates properly Step 8</td>
<td>No response at all Step 2 Operation is reversed Step 3 Does not drive toward “Control Signal” Position Step 4</td>
</tr>
<tr>
<td>2.</td>
<td>Check power wiring. Correct any problems. See Note.</td>
<td>Power supply rating should be the total power requirement of the actuator(s). Minimum voltage of 19.2 vac or 21.6 vdc</td>
<td>Power wiring corrected, actuator begins to drive Step 1</td>
<td>Power wiring corrected, actuator still does not drive Step 4</td>
</tr>
<tr>
<td>3.</td>
<td>Turn reversing switch to the correct position. Make sure the switch is turned all the way left or right.</td>
<td>Actuator will move to its “Control Signal” position.</td>
<td>Actuator operates properly Step 8</td>
<td>Does not drive toward “Control Signal” Position Step 4</td>
</tr>
<tr>
<td>4.</td>
<td>Make sure the control signal positive (+) is connected to Wire No. 3 and control signal negative (-) is connected to Wire No. 1. Most control problems are caused by reversing these two wires. Verify that the reversing switch is all the CCW or CW.</td>
<td>Drives to “Control Signal” Position</td>
<td>Actuator operates properly Step 8</td>
<td>Step 5</td>
</tr>
<tr>
<td>5.</td>
<td>Check input signal with a digital volt meter (DVM). Make sure the input is within the range of the actuator (2 to 10 vdc or 4 to 20 mA). NOTE: The input signal must be the 2vdc or 4 mA to have the actuator move.</td>
<td>Input voltage or current should be ± 1% of what controller’s adjustment or programming indicate.</td>
<td>Controller output (actuator input) is correct Input Polarity Correct Step 6</td>
<td>Reprogram, adjust, repair or replace controller as needed. Step 1</td>
</tr>
<tr>
<td>6.</td>
<td>Loosen the nuts on the V-bolt and move the damper by hand from fully closed to fully open.</td>
<td>Damper will go from fully closed to fully open.</td>
<td>Damper moves properly. Step 7</td>
<td>Find cause of damper jam and repair. Move damper back to fully closed position and tighten the nuts Step 1</td>
</tr>
<tr>
<td>7.</td>
<td>Check damper torque requirement. Torque requirement is actuator’s minimum torque.</td>
<td>Defective Actuator Replace Actuator</td>
<td>Recalculate actuator requirement and correct installation</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Actuator works properly. Test controller by following controller manufacturer’s instructions.</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

NOTE: Check that the transformer(s) are sized properly. If a common transformer is used, make sure that polarity is observed on the secondary. This means connect all No. 1 wires to one leg of the transformer and all No. 2 wires to the other leg of the transformer. If multiple transformers are used with one control signal, make sure all No. 1 wires are tied together and tied to control signal negative (-). Controllers and actuators must have separate 24 vac/vdc poser sources.
ROUTINE 2 (DXCTLO < OAT < 68 F)

- If only Y1 energized, the economizer maintains a
 SASP = (SATLO1 + 3)
- If SAT > SASP + 5 and economizer position > 80%
 economizer will go to minimum position for 3 minutes
 or until SAT > 68 F.
- First stage of mechanical cooling will be energized.
- Integrator resets.
- Economizer opens again and controls to current SASP
 after stage one on for 90 seconds.
- With Y1 and Y2 energized, economizer maintains a
 SASP = SATLO2 + 3
- If SAT > SASP + 5 and economizer position > 80%
 economizer will go to minimum position for 3 minutes
 or unit SAT > 68 F.
- If compressor one is on then second stage of mechanical
 cooling will be energized. Otherwise the first stage will
 be energized.
- Integrator resets.
- Economizer opens again and controls to SASP after
 stage one on for 90 seconds.

ROUTINE 3 (OAT > 68 F)

- Economizer is opened 100%
- Compressors 1 and 2 are cycled based on Y1 and Y2
 using minimum on and off times and watching the supply
 air temperature as compared to SATLO1 and SAT-
 LO2 set points.

Heating, Units with EconoMi$er 2, Premier-
Link™ Control and a Thermostat — When the
thermostat calls for heating, terminal W1 is energized. The
PremierLink control will move the economizer damper to the
minimum position if there is a call for G and closed if there is a
call for W1 without G. In order to prevent thermostat from short cy-
cling, the unit is locked into the heating mode for at least 10
minutes when W1 is energized. The induced draft motor is then
energized and the burner ignition sequence begins.

On units equipped for two stages of heat, when additional
heat is needed, W2 is energized and the high fire solenoid on
the main gas valve (MGV) is energized. When the thermostat
is satisfied and W1 is de-energized, the IFM stops after 45 sec-
time-off delay, unless G is still maintained.

Cooling, Units with EconoMi$er 2, Premier-
Link Control and a Room Sensor — When free
cooling is not available, the compressors will be controlled
by the PremierLink controller using a Proportional Integral Deriv-
ative Loop (PID) Error reduction calculation as indicated by
Fig. 24.

- Indoor fan has been on for at least 30 seconds.
- The SPT, SAT, and OAT inputs must have valid readings.
- OAT must be less than 75 F.
- OAT must be less than SPT.
- Enthalpy must be LOW (may be jumbered if an enthalpy
 sensor is not available).
- Economizer position is NOT forced.

When free cooling is available, the outdoor air damper is
positioned through the use of a Proportional Integral Derivative
Loop (PID) control process to provide a calculated supply air
temperature into the zone. The supply air will maintain the
space temperature between the heating and cooling set points
as indicated in Fig. 25.

The PremierLink controller will integrate the compressor
stages with the economizer based on similar logic as the three
routines listed in the previous section. The SASP will float up
and down based on the error reduction calculations that com-
pare space temperature and space set point.

When outside air temperature conditions require the econo-
mizer to close for a compressor stage-up sequence, the econo-
mizer control integrator is reset to zero after the stage-up se-
quency is completed. This prevents the supply air temperature
from dropping too quickly and creating a freeze condition that
would make the compressor turn off prematurely.

The high space set point is used for DX (direct expansion)
cooling control, while the economizer space set point is a cal-
culated value between the heating and cooling set points. The
economizer set point will always be at least one degree below
the cooling set point, allowing for a smooth transition from me-
chanical cooling with economizer assist, back to economizer
cooling as the cooling set point is achieved. The compressors
may be used for initial cooling then the PremierLink controller
will modulate the economizer using an error reduction calcula-
tion to hold the space temperature between the heating and
cooling set point (See Fig. 25).

The controller uses the following conditions to determine
economizer cooling:

- Enthalpy is low
- SAT reading is available
- OAT reading is available
- SPT reading is available
- OAT ≤ SPT
- Economizer position is NOT forced

If any of the above conditions are not met, the economizer
submaster reference (ECSR) is set to the maximum limit and
the damper moves to minimum position. The operating se-
quency is complete. The ECSR is recalcualated every 30 sec-
onds.

If an optional power exhaust is installed, as the outdoor air
damper opens and closes, the power exhaust fans will be ener-
gized and de-energized.
If field-installed accessory CO₂ sensors are connected to the PremierLink control, a PID-controlled demand ventilation strategy will begin to operate. As the CO₂ level in the zone increases above the CO₂ set point, the minimum position of the damper will be increased proportionally. As the CO₂ level decreases because of the increase in fresh air, the outdoor air damper will be proportionally closed.

Heating Unit with EconoMiSer 2, PremierLink Control and a Room Sensor — Every 40 seconds the controller will calculate the required heat stages (maximum of 3) to maintain supply air temperature (SAT) if the following qualifying conditions are met:

- Indoor fan has been on for at least 30 seconds.
- COOL mode is not active.
- OCCUPIED, TEMP. COMPENSATED START or HEAT mode is active.
- SAT reading is available.
- Fire shutdown mode is not active.

If all of the above conditions are met, the number of heat stages is calculated; otherwise, the required number of heat stages will be set to 0.

If the PremierLink controller determines that heat stages are required, the economizer damper will be moved to minimum position if occupied and closed if unoccupied.

Staging should be as follows:

- If Heating PID STAGES=2
 - HEAT STAGES=1 (50% capacity) will energize HS1
 - HEAT STAGES=2 (100% capacity) will energize HS2

- If Heating PID STAGES=3 and AUXOUT=HS3
 - HEAT STAGES=1 (33% capacity) will energize HS1
 - HEAT STAGES=2 (66% capacity) will energize HS2
 - HEAT STAGES=3 (100% capacity) will energize HS3

In order to prevent short cycling, the unit is locked into the heating mode for at least 10 minutes when HS1 is de-energized. When HS1 is energized, the induced draft motor is then energized and the burner ignition sequence begins. On units equipped for two stages of heat, when additional heat is needed, HS2 is energized and the high-fire solenoid on the main gas valve (MGV) is energized. When the space condition is satisfied and HS1 is de-energized, the IFM stops after a 45 second time-off delay, unless in the occupied mode. The fan will run continuously in the occupied mode as required by national energy and fresh air standards.